52 resultados para Library for Visual Image Analysis
em Université de Lausanne, Switzerland
Resumo:
Images obtained from high-throughput mass spectrometry (MS) contain information that remains hidden when looking at a single spectrum at a time. Image processing of liquid chromatography-MS datasets can be extremely useful for quality control, experimental monitoring and knowledge extraction. The importance of imaging in differential analysis of proteomic experiments has already been established through two-dimensional gels and can now be foreseen with MS images. We present MSight, a new software designed to construct and manipulate MS images, as well as to facilitate their analysis and comparison.
Resumo:
Quantification is a major problem when using histology to study the influence of ecological factors on tree structure. This paper presents a method to prepare and to analyse transverse sections of cambial zone and of conductive phloem in bark samples. The following paper (II) presents the automated measurement procedure. Part I here describes and discusses the preparation method, and the influence of tree age on the observed structure. Highly contrasted images of samples extracted at breast height during dormancy were analysed with an automatic image analyser. Between three young (38 years) and three old (147 years) trees, age-related differences were identified by size and shape parameters, at both cell and tissue levels. In the cambial zone, older trees had larger and more rectangular fusiform initials. In the phloem, sieve tubes were also larger, but their shape did not change and the area for sap conduction was similar in both categories. Nevertheless, alterations were limited, and demanded statistical analysis to be identified and ascertained. The physiological implications of the structural changes are discussed.
Resumo:
BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).
Resumo:
OBJECTIVE: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. METHODS: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. RESULTS: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). CONCLUSION: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. ADVANCES IN KNOWLEDGE: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.
Resumo:
BACKGROUND: The aim of this study is to determine whether statistical associations can be demonstrated in ocular syphilis between baseline clinical and laboratory parameters with visual acuity at presentation and with any change in visual acuity after treatment. METHODS: Charts of 26 patients (42 eyes) with ocular syphilis presenting to the Uveitis clinic of the Jules-Gonin Eye Hospital were reviewed. A baseline cross-sectional analysis was performed in order to identify any association between visual acuity at presentation and demographic, clinical or laboratory parameters. After treatment, any analogy between these parameters and a change in visual acuity was subsequently assessed in a series of univariate comparisons. RESULTS: The following factors were associated with worse initial visual acuity: severity of visual field impairment at presentation (p=0.012), macular oedema (p=0.004) and optic neuropathy (p=0.031). There was a borderline association with the presence of vasculitis on fluroangiography (p=0.072). Improvement in best corrected visual acuity after treatment was significantly associated with the presence of vasculitis on fluroangiography (p=0.005), neurosyphilis, according to lumbar puncture findings (p=0.037) and marginally with anterior uveitis (p=0.070). Inflammation relapse was associated with the coexistence of pain as presenting sign (p<0.001) and with a longer duration of symptoms prior to the initial visit (p=0.023). CONCLUSIONS: Severe ocular inflammation associated with vasculitis, vitritis or anterior uveitis in ocular syphilis would appear to be a reversible phenomenon that responds well to appropriate antibiotic treatment, resulting in improvement in visual acuity. Prompt treatment enables a good visual prognosis, while any delay in therapy increases the risk of subsequent relapse.
Resumo:
The distribution of parvalbumin (PV), calretinin (CR), and calbindin (CB) immunoreactive neurons was studied with the help of an image analysis system (Vidas/Zeiss) in the primary visual area 17 and associative area 18 (Brodmann) of Alzheimer and control brains. In neither of these areas was there a significant difference between Alzheimer and control groups in the mean number of PV, CR, or CB immunoreactive neuronal profiles, counted in a cortical column going from pia to white matter. Significant differences in the mean densities (numbers per square millimeter of cortex) of PV, CR, and CB immunoreactive neuronal profiles were not observed either between groups or areas, but only between superficial, middle, and deep layers within areas 17 and 18. The optical density of the immunoreactive neuropil was also similar in Alzheimer and controls, correlating with the numerical density of immunoreactive profiles in superficial, middle, and deep layers. The frequency distribution of neuronal areas indicated significant differences between PV, CR, and CB immunoreactive neuronal profiles in both areas 17 and 18, with more large PV than CR and CB positive profiles. There were also significantly more small and less large PV and CR immunoreactive neuronal profiles in Alzheimer than in controls. Our data show that, although the brain pathology is moderate to severe, there is no prominent decrease of PV, CR and CB positive neurons in the visual cortex of Alzheimer brains, but only selective changes in neuronal perikarya.
Resumo:
BACKGROUND: Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. OBJECTIVE: To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. MATERIALS AND METHODS: Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. RESULTS: The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. CONCLUSION: Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.
Resumo:
Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.
Resumo:
Several authors have demonstrated an increased number of mitotic figures in breast cancer resection specimen when compared with biopsy material. This has been ascribed to a sampling artifact where biopsies are (i) either too small to allow formal mitotic figure counting or (ii) not necessarily taken form the proliferating tumor periphery. Herein, we propose a different explanation for this phenomenon. Biopsy and resection material of 52 invasive ductal carcinomas was studied. We counted mitotic figures in 10 representative high power fields and quantified MIB-1 immunohistochemistry by visual estimation, counting and image analysis. We found that mitotic figures were elevated by more than three-fold on average in resection specimen over biopsy material from the same tumors (20±6 vs 6±2 mitoses per 10 high power fields, P=0.008), and that this resulted in a relative diminution of post-metaphase figures (anaphase/telophase), which made up 7% of all mitotic figures in biopsies but only 3% in resection specimen (P<0.005). At the same time, the percentages of MIB-1 immunostained tumor cells among total tumor cells were comparable in biopsy and resection material, irrespective of the mode of MIB-1 quantification. Finally, we found no association between the size of the biopsy material and the relative increase of mitotic figures in resection specimen. We propose that the increase in mitotic figures in resection specimen and the significant shift towards metaphase figures is not due to a sampling artifact, but reflects ongoing cell cycle activity in the resected tumor tissue due to fixation delay. The dwindling energy supply will eventually arrest tumor cells in metaphase, where they are readily identified by the diagnostic pathologist. Taken together, we suggest that the rapidly fixed biopsy material better represents true tumor biology and should be privileged as predictive marker of putative response to cytotoxic chemotherapy.
Resumo:
Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex.
Resumo:
In the histomorphological grading of prostate carcinoma, pathologists have regularly assigned comparable scores for the architectural Gleason and the now-obsolete nuclear World Health Organization (WHO) grading systems. Although both systems demonstrate good correspondence between grade and survival, they are based on fundamentally different biological criteria. We tested the hypothesis that this apparent concurrence between the two grading systems originates from an interpretation bias in the minds of diagnostic pathologists, rather than reflecting a biological reality. Three pathologists graded 178 prostatectomy specimens, assigning Gleason and WHO scores on glass slides and on digital images of nuclei isolated out of their architectural context. The results were analysed with respect to interdependencies among the grading systems, to tumour recurrence (PSA relapse > 0.1 ng/ml at 48 months) and robust nuclear morphometry, as assessed by computer-assisted image analysis. WHO and Gleason grades were strongly correlated (r = 0.82) and demonstrated identical prognostic power. However, WHO grades correlated poorly with nuclear morphology (r = 0.19). Grading of nuclei isolated out of their architectural context significantly improved accuracy for nuclear morphology (r = 0.55), but the prognostic power was virtually lost. In conclusion, the architectural organization of a tumour, which the pathologist cannot avoid noticing during initial slide viewing at low magnification, unwittingly influences the subsequent nuclear grade assignment. In our study, the prognostic power of the WHO grading system was dependent on visual assessment of tumour growth pattern. We demonstrate for the first time the influence a cognitive bias can have in the generation of an error in diagnostic pathology and highlight a considerable problem in histopathological tumour grading.
Resumo:
A new quantitative approach of the mandibular sexual dimorphism, based on computer-aided image analysis and elliptical Fourier analysis of the mandibular outline in lateral view is presented. This method was applied to a series of 117 dentulous mandibles from 69 male and 48 female individuals native of Rhenish countries. Statistical discriminant analysis of the elliptical Fourier harmonics allowed the demonstration of a significant sexual dimorphism in 97.1% of males and 91.7% of females, i.e. in a higher proportion than in previous studies using classical metrical approaches. This original method opens interesting perspectives for increasing the accuracy of sex identification in current anthropological practice and in forensic procedures.
Resumo:
PURPOSE: To test the ability of two preparations of FGF2-saporin, either FGF2 chemically conjugated to saporin (FGF2-SAP) or genetically engineered FGF2-saporin (rFGF2-SAP) to inhibit the growth of bovine epithelial lens (BEL) cells in vitro when in solution and when immobilized on heparin surface-modified (HSM) polymethylmethacrylate (PMMA) intraocular lenses (IOLs). METHOD: Bovine epithelial lens cells were incubated with various concentrations FGF2-saporin for as long as 4 days. The number of surviving cells was determined by counting the number of nuclei. Because FGF2 binds to heparin, FGF2-saporin was incubated with HSM PMMA IOLs; excess toxin was washed off, and the BEL cells were grown on the FGF2-saporin-treated IOLs (HSM and non-HSM) for 4 days. Cell density was determined by image analysis. RESULTS: Both FGF2-SAP and rFGF2-SAP were highly cytotoxic (nM range), with rFGF2-SAP 10 times less active than FGF2-SAP. FGF2-saporin bound to the surface of HSM IOLs and eluted by 2M NaCl retained its activity. Toxin bound to HSM IOLs killed more than 90% of the BEL cells placed on the IOL surface within 4 days. The ability of FGF2-saporin to prevent the growth of cells on the IOL surface was strictly dependent on the presence of heparin on the IOL. CONCLUSIONS: FGF2-saporin is bound to HSM PMMA IOLs and prevents the growth of epithelial cells on the surface of the lens.
Resumo:
Whether for investigative or intelligence aims, crime analysts often face up the necessity to analyse the spatiotemporal distribution of crimes or traces left by suspects. This article presents a visualisation methodology supporting recurrent practical analytical tasks such as the detection of crime series or the analysis of traces left by digital devices like mobile phone or GPS devices. The proposed approach has led to the development of a dedicated tool that has proven its effectiveness in real inquiries and intelligence practices. It supports a more fluent visual analysis of the collected data and may provide critical clues to support police operations as exemplified by the presented case studies.
Resumo:
Purpose: To determine dose thresholds, in term of CTDIvol, where subtle anatomical structures of pediatric CT images becomes no more detectable and compare them to the most recent Reference Dose Levels (DRL) proposed in the UK, Germany and Switzerland. Materials and methods: A GE LightSpeed-Ultra scanner (MSCT 8 slices) was used to perform chest and abdomen acquisitions on 8 patients (age range 2 to 16 years old) to provide a set of gold standard images. Dose reductions were then simulated by introducing image noise on raw data to provide simulated CT images with CTDIvol ranging from 2 to 22 mGy. All images were reviewed and scored independently by four experienced radiologists using the VGA methodology (Visual Grading Analysis) to determine the dose threshold where a significant loss of normal anatomy conspicuity appeared. Data were analyzed with ANOVA and Tukey HSD tests, a p >0.05 was considered to be significant. Results: No significant difference in VGA scoring appeared for CTDIvol leading to image noise levels lower than 10 and 25 HU for respectively abdominal and chest acquisitions. These data can thus be used to set the AEC (automatic exposure control) system of units having similar noise properties than the GE LightSpeed-Ultra used in this study. The present DRLs proposed for pediatric CT acquisitions are compatible with an excellent image quality level. Conclusion: The differences of DRL values proposed in Europe for pediatric acquisitions are marginal and assure a very good image quality level. The results of this study allow to further optimize the acquisition protocol by giving Noise Index value to set the AEC device.