9 resultados para Lewis, Tayler, 1802-1877.
em Université de Lausanne, Switzerland
Resumo:
The family Acrochordiceratidae Arthaber, 1911 ranges in age from latest Spathian to the middle/late Anisian boundary, and it represents a major component of ammonoid faunas during that time. The middle Anisian genus Acrochordiceras Hyatt, 1877 is the most widespread taxon of the family and occurs abundantly worldwide within the low paleolatitude belt. However, there is a profusion of species names available for Acrochordiceras. This excessive diversity at the species level essentially results from the fact that sufficiently large samples were not available, thus leading to a typological approach to its taxonomy. Based on new extensive collections obtained from the Anisian (Middle Triassic) Fossil Hill Member (Star Peak Group, north-west Nevada) for which a high resolution biostratigraphic frame is available, the taxonomy and biostratigraphy of the genus Acrochordiceras Hyatt, 1877 is herein revised with respect to its intra-specific variation. Morphological and biometric studies (c. 550 bedrock-controlled specimens were measured) show that only one species occurs in each stratigraphic level. Continuous ranges of intra-specific variation of studied specimens enable us to synonymize Haydenites Diener, 1907, Silesiacrochordiceras Diener, 1916 and Epacrochordiceras Spath, 1934 with Acrochordiceras Hyatt, 1877. Three stratigraphically successive species are herein recognized in the low paleolatitude middle Anisian faunas from Nevada: A. hatschekii (Diener, 1907), A. hyatti Meek, 1877 and A. carolinae Mojsisovics, 1882. Moreover, an assessment of intra-specific variation of the adult size range does not support recognition of a dimorphic pair (Acrochordiceras and Epacrochordiceras) as previously suggested by other workers (Epacrochordiceras is the compressed and weakly ornamented end-member variant of Acrochordiceras). The successive middle Anisian species of Acrochordiceras form an anagenetic lineage characterized by increasing involution, adult size and intra-specific variation. This taxonomic revision based on new bedrock-controlled collections is thus an important prerequisite before studying the evolution of the group.
Resumo:
PURPOSE: Local delivery of therapeutic molecules encapsulated within liposomes is a promising method to treat ocular inflammation. The purpose of the present study was to define the biodistribution of rhodamine-conjugated liposomes loaded with vasoactive intestinal peptide (VIP), an immunosuppressive neuropeptide, following their intravitreal (IVT) injection in normal rats. METHODS: Healthy seven- to eight-week-old Lewis male rats were injected into the vitreous with empty rhodamine-conjugated liposomes (Rh-Lip) or with VIP-loaded Rh-Lip (VIP-Rh-Lip; 50 mM of lipids with an encapsulation efficiency of 3.0+/-0.4 mmol VIP/mol lipids). Twenty-four h after IVT injection, the eyes, the cervical, mesenteric, and inguinal lymph nodes (LN), and spleen were collected. The phenotype and distribution of cells internalizing Rh-Lip and VIP-Rh-Lip were studied. Determination of VIP expression in ocular tissues and lymphoid organs and interactions with T cells in cervical LN was performed on whole mounted tissues and frozen tissue sections by immunofluorescence and confocal microscopy. RESULTS: In the eye, 24 h following IVT injection, fluorescent liposomes (Rh-Lip and VIP-Rh-Lip) were detected mainly in the posterior segment of the eye (vitreous, inner layer of the retina) and to a lesser extent at the level of the iris root and ciliary body. Liposomes were internalized by activated retinal Müller glial cells, ocular tissue resident macrophages, and rare infiltrating activated macrophages. In addition, fluorescent liposomes were found in the episclera and conjunctiva where free VIP expression was also detected. In lymphoid organs, Rh-Lip and VIP-Rh-Lip were distributed almost exclusively in the cervical lymph nodes (LN) with only a few Rh-Lip-positive cells detected in the spleen and mesenteric LN and none in the inguinal LN. In the cervical LN, Rh-Lip were internalized by resident ED3-positive macrophages adjacent to CD4 and CD8-positive T lymphocytes. Some of these T lymphocytes in close contact with macrophages containing VIP-Rh-Lip expressed VIP. CONCLUSIONS: Liposomes are specifically internalized by retinal Müller glial cells and resident macrophages in the eye. A limited passage of fluorescent liposomes from the vitreous to the spleen via the conventional outflow pathway and the venous circulation was detected. The majority of fluorescent liposomes deposited in the conjunctiva following IVT injection reached the subcapsular sinus of the cervical LN via conjuntival lymphatics. In the cervical LN, Rh-Lip were internalized by resident subcapsular sinus macrophages adjacent to T lymphocytes. Detection of VIP in both macrophages and T cells in cervical LN suggests that IVT injection of VIP-Rh-Lip may increase ocular immune privilege by modulating the loco-regional immune environment. In conclusion, our observations suggest that IVT injection of VIP-loaded liposomes is a promising therapeutic strategy to dampen ocular inflammation by modulating macrophage and T cell activation mainly in the loco-regional immune system.
Resumo:
Carcinoembryonic antigen (CEA) was purified from primary tumour or from hepatic metastases obtained from ten cases of carcinoma of the colon. In nine cases the blood group antigens A, B, Lea or Leb were detected in CEA preparations by the binding of 125I-labelled CEA by blood group antibodies. The extent of binding appeared to preclude simple contamination of CEA preparations by blood group glycoprotein. In all cases the blood group antigens detected were consistent with the patients' known blood groups. Blood group I and i activities were not detected. It is concluded that the determinants of A, B and Lewis antigens and of CEA share the same glycoprotein carrier molecules.