8 resultados para Leaf Area
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: A central question for understanding the evolutionary responses of plant species to rapidly changing environments is the assessment of their potential for short-term (in one or a few generations) genetic change. In our study, we consider the case of Pinus pinaster Aiton (maritime pine), a widespread Mediterranean tree, and (i) test, under different experimental conditions (growth chamber and semi-natural), whether higher recruitment in the wild from the most successful mothers is due to better performance of their offspring; and (ii) evaluate genetic change in quantitative traits across generations at two different life stages (mature trees and seedlings) that are known to be under strong selection pressure in forest trees. RESULTS: Genetic control was high for most traits (h2 = 0.137-0.876) under the milder conditions of the growth chamber, but only for ontogenetic change (0.276), total height (0.415) and survival (0.719) under the more stressful semi-natural conditions. Significant phenotypic selection gradients were found in mature trees for traits related to seed quality (germination rate and number of empty seeds). Moreover, female relative reproductive success was significantly correlated with offspring performance for specific leaf area (SLA) in the growth chamber experiment, and stem mass fraction (SMF) in the experiment under semi-natural conditions, two adaptive traits related to abiotic stress-response in pines. Selection gradients based on genetic covariance of seedling traits and responses to selection at this stage involved traits related to biomass allocation (SMF) and growth (as decomposed by a Gompertz model) or delayed ontogenetic change, depending also on the testing environment. CONCLUSIONS: Despite the evidence of microevolutionary change in adaptive traits in maritime pine, directional or disruptive changes are difficult to predict due to variable selection at different life stages and environments. At mature-tree stages, higher female effective reproductive success can be explained by differences in their production of offspring (due to seed quality) and, to a lesser extent, by seemingly better adapted seedlings. Selection gradients and responses to selection for seedlings also differed across experimental conditions. The distinct processes involved at the two life stages (mature trees or seedlings) together with environment-specific responses advice caution when predicting likely evolutionary responses to environmental change in Mediterranean forest trees.
Resumo:
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.
Resumo:
Questions Soil properties have been widely shown to influence plant growth and distribution. However, the degree to which edaphic variables can improve models based on topo-climatic variables is still unclear. In this study, we tested the roles of seven edaphic variables, namely (1) pH; (2) the content of nitrogen and of (3) phosphorus; (4) silt; (5) sand; (6) clay and (7) carbon-to-nitrogen ratio, as predictors of species distribution models in an edaphically heterogeneous landscape. We also tested how the respective influence of these variables in the models is linked to different ecological and functional species characteristics. Location The Western Alps, Switzerland. Methods With four different modelling techniques, we built models for 115 plant species using topo-climatic variables alone and then topo-climatic variables plus each of the seven edaphic variables, one at a time. We evaluated the contribution of each edaphic variable by assessing the change in predictive power of the model. In a second step, we evaluated the importance of the two edaphic variables that yielded the largest increase in predictive power in one final set of models for each species. Third, we explored the change in predictive power and the importance of variables across plant functional groups. Finally, we assessed the influence of the edaphic predictors on the prediction of community composition by stacking the models for all species and comparing the predicted communities with the observed community. Results Among the set of edaphic variables studied, pH and nitrogen content showed the highest contributions to improvement of the predictive power of the models, as well as the predictions of community composition. When considering all topo-climatic and edaphic variables together, pH was the second most important variable after degree-days. The changes in model results caused by edaphic predictors were dependent on species characteristics. The predictions for the species that have a low specific leaf area, and acidophilic preferences, tolerating low soil pH and high humus content, showed the largest improvement by the addition of pH and nitrogen in the model. Conclusions pH was an important predictor variable for explaining species distribution and community composition of the mountain plants considered in our study. pH allowed more precise predictions for acidophilic species. This variable should not be neglected in the construction of species distribution models in areas with contrasting edaphic conditions.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.
Resumo:
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
Resumo:
Community-level patterns of functional traits relate to community assembly and ecosystem functioning. By modelling the changes of different indices describing such patterns - trait means, extremes and diversity in communities - as a function of abiotic gradients, we could understand their drivers and build projections of the impact of global change on the functional components of biodiversity. We used five plant functional traits (vegetative height, specific leaf area, leaf dry matter content, leaf nitrogen content and seed mass) and non-woody vegetation plots to model several indices depicting community-level patterns of functional traits from a set of abiotic environmental variables (topographic, climatic and edaphic) over contrasting environmental conditions in a mountainous landscape. We performed a variation partitioning analysis to assess the relative importance of these variables for predicting patterns of functional traits in communities, and projected the best models under several climate change scenarios to examine future potential changes in vegetation functional properties. Not all indices of trait patterns within communities could be modelled with the same level of accuracy: the models for mean and extreme values of functional traits provided substantially better predictive accuracy than the models calibrated for diversity indices. Topographic and climatic factors were more important predictors of functional trait patterns within communities than edaphic predictors. Overall, model projections forecast an increase in mean vegetation height and in mean specific leaf area following climate warming. This trend was important at mid elevation particularly between 1000 and 2000 m asl. With this study we showed that topographic, climatic and edaphic variables can successfully model descriptors of community-level patterns of plant functional traits such as mean and extreme trait values. However, which factors determine the diversity of functional traits in plant communities remains unclear and requires more investigations.
Resumo:
Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.
Resumo:
Aim: Modelling species at the assemblage level is required to make effective forecast of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (MEM), or by stacking of individual species distribution models (S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a "Probability ranking" rule based on species richness predictions and rough probabilities from SDMs, and a "Trait range" rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area and seed mass) to constraint a pool of environmentally filtered species from binary SDMs predictions. Results: We showed that all independent constraints expectedly contributed to reduce species richness overprediction. Only the "Probability ranking" rule allowed slightly but significantly improving predictions of community composition. Main conclusion: We tested various ways to implement the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further improving the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.