23 resultados para Lead Analysis Data processing
em Université de Lausanne, Switzerland
Resumo:
The R package EasyStrata facilitates the evaluation and visualization of stratified genome-wide association meta-analyses (GWAMAs) results. It provides (i) statistical methods to test and account for between-strata difference as a means to tackle gene-strata interaction effects and (ii) extended graphical features tailored for stratified GWAMA results. The software provides further features also suitable for general GWAMAs including functions to annotate, exclude or highlight specific loci in plots or to extract independent subsets of loci from genome-wide datasets. It is freely available and includes a user-friendly scripting interface that simplifies data handling and allows for combining statistical and graphical functions in a flexible fashion. AVAILABILITY: EasyStrata is available for free (under the GNU General Public License v3) from our Web site www.genepi-regensburg.de/easystrata and from the CRAN R package repository cran.r-project.org/web/packages/EasyStrata/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.
Resumo:
BACKGROUND: Solexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology. RESULTS: We propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads. CONCLUSION: We show that the method improves genome coverage and number of usable tags as compared with Solexa's data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexa's fluorescence intensity files and the production of informative diagnostic plots.
Resumo:
MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.
Resumo:
Les approches multimodales dans l'imagerie cérébrale non invasive sont de plus en plus considérées comme un outil indispensable pour la compréhension des différents aspects de la structure et de la fonction cérébrale. Grâce aux progrès des techniques d'acquisition des images de Resonance Magnetique et aux nouveaux outils pour le traitement des données, il est désormais possible de mesurer plusieurs paramètres sensibles aux différentes caractéristiques des tissues cérébraux. Ces progrès permettent, par exemple, d'étudier les substrats anatomiques qui sont à la base des processus cognitifs ou de discerner au niveau purement structurel les phénomènes dégénératifs et développementaux. Cette thèse met en évidence l'importance de l'utilisation d'une approche multimodale pour étudier les différents aspects de la dynamique cérébrale grâce à l'application de cette approche à deux études cliniques: l'évaluation structurelle et fonctionnelle des effets aigus du cannabis fumé chez des consommateurs réguliers et occasionnels, et l'évaluation de l'intégrité de la substance grise et blanche chez des jeunes porteurs de la prémutations du gène FMR1 à risque de développer le FXTAS (Fragile-X Tremor Ataxia Syndrome). Nous avons montré que chez les fumeurs occasionnels de cannabis, même à faible concentration du principal composant psychoactif (THC) dans le sang, la performance lors d'une tâche visuo-motrice est fortement diminuée, et qu'il y a des changements dans l'activité des trois réseaux cérébraux impliqués dans les processus cognitifs: le réseau de saillance, le réseau du contrôle exécutif, et le réseau actif par défaut (Default Mode). Les sujets ne sont pas en mesure de saisir les saillances dans l'environnement et de focaliser leur attention sur la tâche. L'augmentation de la réponse hémodynamique dans le cortex cingulaire antérieur suggère une augmentation de l'activité introspective. Une investigation des ef¬fets au niveau cérébral d'une exposition prolongée au cannabis, montre des changements persistants de la substance grise dans les régions associées à la mémoire et au traitement des émotions. Le niveau d'atrophie dans ces structures corrèle avec la consommation de cannabis au cours des trois mois précédant l'étude. Dans la deuxième étude, nous démontrons des altérations structurelles des décennies avant l'apparition du syndrome FXTAS chez des sujets jeunes, asymptomatiques, et porteurs de la prémutation du gène FMR1. Les modifications trouvées peuvent être liées à deux mécanismes différents. Les altérations dans le réseau moteur du cervelet et dans la fimbria de l'hippocampe, suggèrent un effet développemental de la prémutation. Elles incluent aussi une atrophie de la substance grise du lobule VI du cervelet et l'altération des propriétés tissulaires de la substance blanche des projections afférentes correspondantes aux pédoncules cérébelleux moyens. Les lésions diffuses de la substance blanche cérébrale peu¬vent être un marquer précoce du développement de la maladie, car elles sont liées à un phénomène dégénératif qui précède l'apparition des symptômes du FXTAS. - Multimodal brain imaging is becoming a leading tool for understanding different aspects of brain structure and function. Thanks to the advances in Magnetic Resonance imaging (MRI) acquisition schemes and data processing techniques, it is now possible to measure different parameters sensitive to different tissue characteristics. This allows for example to investigate anatomical substrates underlying cognitive processing, or to disentangle, at a pure structural level degeneration and developmental processes. This thesis highlights the importance of using a multimodal approach for investigating different aspects of brain dynamics by applying this approach to two clinical studies: functional and structural assessment of the acute effects of cannabis smoking in regular and occasional users, and grey and white matter assessment in young FMR1 premutation carriers at risk of developing FXTAS. We demonstrate that in occasional smokers cannabis smoking, even at low concentration of the main psychoactive component (THC) in the blood, strongly decrease subjects' performance on a visuo-motor tracking task, and globally alters the activity of the three brain networks involved in cognitive processing: the Salience, the Control Executive, and the Default Mode networks. Subjects are unable to capture saliences in the environment and to orient attention to the task; the increase in Hemodynamic Response in the Anterior Cingulate Cortex suggests an increase in self-oriented mental activity. A further investigation on long term exposure to cannabis, shows a persistent grey matter modification in brain regions associated with memory and affective processing. The degree of atrophy in these structures also correlates with the estimation of drug use in the three months prior the participation to the study. In the second study we demonstrate structural changes in young asymptomatic premutation carriers decades before the onset of FXTAS that might be related to two different mechanisms. Alteration of the cerebellar motor network and of the hippocampal fimbria/ fornix, may reflect a potential neurodevelopmental effect of the premutation. These include grey matter atrophy in lobule VI and modification of white matter tissue property in the corresponding afferent projections through the Middle Cerebellar Peduncles. Diffuse hemispheric white matter lesions that seem to appear closer to the onset of FXTAS and be related to a neurodegenerative phenomenon may mark the imminent onset of FXTAS.
Resumo:
There are far-reaching conceptual similarities between bi-static surface georadar and post-stack, "zero-offset" seismic reflection data, which is expressed in largely identical processing flows. One important difference is, however, that standard deconvolution algorithms routinely used to enhance the vertical resolution of seismic data are notoriously problematic or even detrimental to the overall signal quality when applied to surface georadar data. We have explored various options for alleviating this problem and have tested them on a geologically well-constrained surface georadar dataset. Standard stochastic and direct deterministic deconvolution approaches proved to be largely unsatisfactory. While least-squares-type deterministic deconvolution showed some promise, the inherent uncertainties involved in estimating the source wavelet introduced some artificial "ringiness". In contrast, we found spectral balancing approaches to be effective, practical and robust means for enhancing the vertical resolution of surface georadar data, particularly, but not exclusively, in the uppermost part of the georadar section, which is notoriously plagued by the interference of the direct air- and groundwaves. For the data considered in this study, it can be argued that band-limited spectral blueing may provide somewhat better results than standard band-limited spectral whitening, particularly in the uppermost part of the section affected by the interference of the air- and groundwaves. Interestingly, this finding is consistent with the fact that the amplitude spectrum resulting from least-squares-type deterministic deconvolution is characterized by a systematic enhancement of higher frequencies at the expense of lower frequencies and hence is blue rather than white. It is also consistent with increasing evidence that spectral "blueness" is a seemingly universal, albeit enigmatic, property of the distribution of reflection coefficients in the Earth. Our results therefore indicate that spectral balancing techniques in general and spectral blueing in particular represent simple, yet effective means of enhancing the vertical resolution of surface georadar data and, in many cases, could turn out to be a preferable alternative to standard deconvolution approaches.
Resumo:
The DNA microarray technology has arguably caught the attention of the worldwide life science community and is now systematically supporting major discoveries in many fields of study. The majority of the initial technical challenges of conducting experiments are being resolved, only to be replaced with new informatics hurdles, including statistical analysis, data visualization, interpretation, and storage. Two systems of databases, one containing expression data and one containing annotation data are quickly becoming essential knowledge repositories of the research community. This present paper surveys several databases, which are considered "pillars" of research and important nodes in the network. This paper focuses on a generalized workflow scheme typical for microarray experiments using two examples related to cancer research. The workflow is used to reference appropriate databases and tools for each step in the process of array experimentation. Additionally, benefits and drawbacks of current array databases are addressed, and suggestions are made for their improvement.
Resumo:
Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study.
Resumo:
The sparsely spaced highly permeable fractures of the granitic rock aquifer at Stang-er-Brune (Brittany, France) form a well-connected fracture network of high permeability but unknown geometry. Previous work based on optical and acoustic logging together with single-hole and cross-hole flowmeter data acquired in 3 neighbouring boreholes (70-100 m deep) has identified the most important permeable fractures crossing the boreholes and their hydraulic connections. To constrain possible flow paths by estimating the geometries of known and previously unknown fractures, we have acquired, processed and interpreted multifold, single- and cross-hole GPR data using 100 and 250 MHz antennas. The GPR data processing scheme consisting of timezero corrections, scaling, bandpass filtering and F-X deconvolution, eigenvector filtering, muting, pre-stack Kirchhoff depth migration and stacking was used to differentiate fluid-filled fracture reflections from source generated noise. The final stacked and pre-stack depth-migrated GPR sections provide high-resolution images of individual fractures (dipping 30-90°) in the surroundings (2-20 m for the 100 MHz antennas; 2-12 m for the 250 MHz antennas) of each borehole in a 2D plane projection that are of superior quality to those obtained from single-offset sections. Most fractures previously identified from hydraulic testing can be correlated to reflections in the single-hole data. Several previously unknown major near vertical fractures have also been identified away from the boreholes.
Resumo:
Proteomics has come a long way from the initial qualitative analysis of proteins present in a given sample at a given time ("cataloguing") to large-scale characterization of proteomes, their interactions and dynamic behavior. Originally enabled by breakthroughs in protein separation and visualization (by two-dimensional gels) and protein identification (by mass spectrometry), the discipline now encompasses a large body of protein and peptide separation, labeling, detection and sequencing tools supported by computational data processing. The decisive mass spectrometric developments and most recent instrumentation news are briefly mentioned accompanied by a short review of gel and chromatographic techniques for protein/peptide separation, depletion and enrichment. Special emphasis is placed on quantification techniques: gel-based, and label-free techniques are briefly discussed whereas stable-isotope coding and internal peptide standards are extensively reviewed. Another special chapter is dedicated to software and computing tools for proteomic data processing and validation. A short assessment of the status quo and recommendations for future developments round up this journey through quantitative proteomics.
Resumo:
Achieving a high degree of dependability in complex macro-systems is challenging. Because of the large number of components and numerous independent teams involved, an overview of the global system performance is usually lacking to support both design and operation adequately. A functional failure mode, effects and criticality analysis (FMECA) approach is proposed to address the dependability optimisation of large and complex systems. The basic inductive model FMECA has been enriched to include considerations such as operational procedures, alarm systems. environmental and human factors, as well as operation in degraded mode. Its implementation on a commercial software tool allows an active linking between the functional layers of the system and facilitates data processing and retrieval, which enables to contribute actively to the system optimisation. The proposed methodology has been applied to optimise dependability in a railway signalling system. Signalling systems are typical example of large complex systems made of multiple hierarchical layers. The proposed approach appears appropriate to assess the global risk- and availability-level of the system as well as to identify its vulnerabilities. This enriched-FMECA approach enables to overcome some of the limitations and pitfalls previously reported with classical FMECA approaches.
Resumo:
Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.
Resumo:
Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.