36 resultados para Laser-induced plasmas
em Université de Lausanne, Switzerland
Resumo:
Free amino acids (AAs) in human plasma are derivatized with 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) and analyzed by capillary electrophoresis (CE) with laser induced fluorescence (LIF) detection. The labeling procedure is significantly improved over results reported previously. Derivatization can be completed in 40 min, with concentrations as low as 4 x 10(-8) M successfully labeled in favourable cases. Twenty-nine AAs (including 2 internal standards) are identified and can be reproducibly separated in 70 min. Migration time RSD values for 23 of these AAs were calculated and found in the range from 0.5 to 4%. The rapid derivatization procedure and the resolution obtained in the separation are sufficient for a semi-quantitative, emergency diagnosis of several inborn errors of metabolism (IEM). Amino acid profiles for both normal donor plasma samples and plasma samples of patients suffering from phenylketonuria, tyrosinemia, maple syrup urinary disease, hyperornithinemia, and citrullinemia are studied.
Resumo:
Inhibition of vascular endothelial growth factor (VEGF) has become the standard of care for patients presenting with wet age-related macular degeneration. However, monthly intravitreal injections are required for optimal efficacy. We have previously shown that electroporation enabled ciliary muscle gene transfer results in sustained protein secretion into the vitreous for up to 9 months. Here, we evaluated the long-term efficacy of ciliary muscle gene transfer of three soluble VEGF receptor-1 (sFlt-1) variants in a rat model of laser-induced choroidal neovascularization (CNV). All three sFlt-1 variants significantly diminished vascular leakage and neovascularization as measured by fluorescein angiography (FA) and flatmount choroid at 3 weeks. FA and infracyanine angiography demonstrated that inhibition of CNV was maintained for up to 6 months after gene transfer of the two shortest sFlt-1 variants. Throughout, clinical efficacy was correlated with sustained VEGF neutralization in the ocular media. Interestingly, treatment with sFlt-1 induced a 50% downregulation of VEGF messenger RNA levels in the retinal pigment epithelium and the choroid. We demonstrate for the first time that non-viral gene transfer can achieve a long-term reduction of VEGF levels and efficacy in the treatment of CNV.Gene Therapy advance online publication, 27 June 2013; doi:10.1038/gt.2013.36.
Resumo:
Purpose: Pathologic choroidal neovascularizations (CNV) are implicated in the wet form of age-related macular degeneration (ARMD). Abnormal vessel growth is also observed in disease when hypoxia and/or inflammation occur. Our goal is to establish a standard protocol of laser-induced CNV in mice that have different levels of pigmentation to identify the most reliable animal model.Methods: CNV was induced by 4 burns around the optic disk, using a green argon laser (100μm diameter spot size; 0,05 sec. duration) in C57/Bl6, DBA/1 and Balb/c to ascertain the efficacy of the method in function of retina pigmentation. Five different intensities were tested and Bruch's membrane disruption was identified by the appearance of a bubble at the site of photocoagulation. Fluorescein angiographies (FA) were undertaken 14 days post lesion and CNV area was quantified by immunohistochemistry on cryosections.Results: CNV retina area was related to spot intensity after laser injury. While 180mW and 200mW do not induce reliable CNV (respectively 27.85±0.35% and 29±1.67% of the retina surface), 260mW is required to induce 51,07±8.52% of CNV in C57/Bl6 mice. For the DBA/1 strain, less pigmented, 200mW was sufficient to induce 49.35±3.9% of CNV, indicating that lower intensity are required to induce CNV. Furthermore, an intensity of 180mW induced greater CNV (35.55±6.01%) than in C57/Bl6 mice. Nevertheless, laser did not induce reproducible 50% CNV in Balb/c albino mice for all intensities tested. Isolectin-B4 and GFAP stainings revealed neovessel formation and photoreceptor (PR) degeneration at the impact site. The presence of glia was observed throughout all the retinal layers and angiograms showed fluorescein leakage in pigmented mice.Conclusions: The establishment of a standard protocol to induce CNV and subsequent PR degeneration is of prime importance for the use of the laser-induced CNV model and will allow to evaluate the therapeutic potency of agents to prevent CNV and retinal degeneration.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8x106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 mu l) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 mu s instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemining from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
ABSTRACTIn normal tissues, a balance between pro- and anti-angiogenic factors tightly controls angiogenesis. Alterations of this balance may have pathological consequences. For instance, concerning the retina, the vascular endothelial growth factor (VEGF) is a potent pro-angiogenic factor, and has been identified has a key player during ocular neovascularization implicated in a variety of retinal diseases. In the exudative form (wet-form) of age-related macular degeneration (AMD), neovascularizations occurring from the choroidal vessels are responsible for a quick and dramatic loss of visual acuity. In diabetic retinopathy and retinopathy of prematurity, sprouting from the retinal vessels leads to vision loss. Furthermore, the aging of the population, the increased- prevalence of diabetes and the better survival rate of premature infants will lead to an increasing rate of these conditions. In this way, anti-VEGF strategy represents an important therapeutic target to treat ocular neovascular disorders.In addition, the administration of Pigmented Epithelial growth factor, a neurotrophic and an anti- angiogenic factor, prevents photoreceptor cell death in a model of retinal degeneration induced by light. Previous results analyzing end point morphology reveal that the light damage (LD) model is used to mimic retinal degenerations arising from environmental insult, as well as aging and genetic disease such as advanced atrophic AMD. Moreover, light has been identified as a co-factor in a number of retinal diseases, speeding up the degeneration process. This protecting effect of PEDF in the LD retina raises the possibility of involvement of the balance between pro- and anti-angiogenic factors not only for angiogenesis, but also in cell survival and maintenance.The aim of the work presented here was to evaluate the importance of this balance in neurodegenerative processes. To this aim, a model of light-induced retinal degeneration was used and characterized, mainly focusing on factors simultaneously controlling neuron survival and angiogenesis, such as PEDF and VEGF.In most species, prolonged intense light exposure can lead to photoreceptor cell damage that can progress to cell death and vision loss. A protocol previously described to induce retinal degeneration in Balb/c mice was used. Retinas were characterized at different time points after light injury through several methods at the functional and molecular levels. Data obtained confirmed that toxic level of light induce PR cell death. Variations were observed in VEGF pathway players in both the neural retina and the eye-cup containing the retinal pigment epithelium (RPE), suggesting a flux of VEGF from the RPE towards the neuroretina. Concomitantly, the integrity of the outer blood-retinal-barrier (BRB) was altered, leading to extravascular albumin leakage from the choroid throughout the photoreceptor layer.To evaluate the importance of VEGF during light-induced retinal degeneration process, a lentiviral vector encoding the cDNA of a single chain antibody directed against all VEGF-A isoforms was developed (LV-V65). The bioactivity of this vector to block VEGF was validated in a mouse model of laser-induced choroidal neovascularization mediated by VEGF upregulation. The vector was then used in the LD model. The administration of the LV-V65 contributed to the maintenance of functional photoreceptors, which was assessed by ERG recording, visual acuity measurement and histological analyses. At the RPE level, the BRB integrity was preserved as shown by the absence of albumin leakage and the maintenance of RPE cell cohesion.These results taken together indicate that the VEGF is a mediator of light induced PR degeneration process and confirm the crucial role of the balance between pro- and anti-angiogenic factors in the PR cell survival. This work also highlights the prime importance of BRB integrity and functional coupling between RPE and PR cells to maintain the PR survival. VEGF dysregulation was already shown to be involved in wet AMD forms and our study suggests that VEGF dysregulation may also occur at early stages of AMD and could thus be a potential therapeutic target for several RPE related diseases.RESUMEDans les différents tissues de l'organisme, l'angiogenèse est strictement contrôlée par une balance entre les facteurs pro- et anti-angiogéniques. Des modifications survenant dans cette balance peuvent engendrer des conséquences pathologiques. Par exemple, concernant la rétine, le facteur de croissance de l'endothélium vasculaire (VEGF) est un facteur pro-angiogénique important. Ce facteur a été identifié comme un acteur majeur dans les néovascularisations oculaires et les processus pathologiques angiogéniques survenant dans l'oeil et responsables d'une grande variété de maladies rétiniennes. Dans la forme humide de la dégénérescence maculaire liée à l'âge (DMLA), la néovascularisation choroïdienne est responsable de la perte rapide et brutale de l'acuité visuelle chez les patients affectés. Dans la rétinopathie diabétique et celle lié à la prématurité, l'émergence de néovaisseaux rétiniens est la cause de la perte de la vision. Les néovascularisations oculaires représentent la principale cause de cécité dans les pays développés. De plus, l'âge croissant de la population, la progression de la prévalence du diabète et la meilleure survie des enfants prématurés mèneront sans doute à l'augmentation de ces pathologies dans les années futures. Dans ces conditions, les thérapies anti- angiogéniques visant à inhiber le VEGF représentent une importante cible thérapeutique pour le traitement de ces pathologies.Plusieurs facteurs anti-angiogéniques ont été identifiés. Parmi eux, le facteur de l'épithélium pigmentaire (PEDF) est à la fois un facteur neuro-trophique et anti-angiogénique, et l'administration de ce facteur au niveau de la rétine dans un modèle de dégénérescence rétinienne induite par la lumière protège les photorécepteurs de la mort cellulaire. Des études antérieures basées sur l'analyse morphologique ont révélé que les modifications survenant lors de la dégénération induite suite à l'exposition à des doses toxiques de lumière représente un remarquable modèle pour l'étude des dégénérations rétiniennes suite à des lésions environnementales, à l'âge ou encore aux maladies génétiques telle que la forme atrophique avancée de la DMLA. De plus, la lumière a été identifiée comme un co-facteur impliqué dans un grand nombre de maladies rétiniennes, accélérant le processus de dégénération. L'effet protecteur du PEDF dans les rétines lésées suite à l'exposition de des doses toxiques de lumière suscite la possibilité que la balance entre les facteurs pro- et anti-angiogéniques soit impliquée non seulement dans les processus angiogéniques, mais également dans le maintient et la survie des cellules.Le but de ce projet consiste donc à évaluer l'implication de cette balance lors des processus neurodégénératifs. Pour cela, un modèle de dégénération induite par la lumière à été utilisé et caractérisé, avec un intérêt particulier pour les facteurs comme le PEDF et le VEGF contrôlant simultanément la survie des neurones et l'angiogenèse.Dans la plupart des espèces, l'exposition prolongée à une lumière intense peut provoquer des dommages au niveau des cellules photoréceptrices de l'oeil, qui peut mener à leur mort, et par conséquent à la perte de la vision. Un protocole préalablement décrit a été utilisé pour induire la dégénération rétinienne dans les souris albinos Balb/c. Les rétines ont été analysées à différents moments après la lésion par différentes techniques, aussi bien au niveau moléculaire que fonctionnel. Les résultats obtenus ont confirmé que des doses toxiques de lumière induisent la mort des photorécepteurs, mais altèrent également la voie de signalisation du VEGF, aussi bien dans la neuro-rétine que dans le reste de l'oeil, contenant l'épithélium pigmentaire (EP), et suggérant un flux de VEGF provenant de ΙΈΡ en direction de la neuro-rétine. Simultanément, il se produit une altération de l'intégrité de la barrière hémato-rétinienne externe, menant à la fuite de protéine telle que l'albumine, provenant de la choroïde et retrouvée dans les compartiments extravasculaires de la rétine, telle que dans la couche des photorécepteurs.Pour déterminer l'importance et le rôle du VEGF, un vecteur lentiviral codant pour un anticorps neutralisant dirigée contre tous les isoformes du VEGF a été développé (LV-V65). La bio-activité de ce vecteur a été testé et validée dans un modèle de laser, connu pour induire des néovascularisations choroïdiennes chez la souris suite à l'augmentation du VEGF. Ce vecteur a ensuite été utilisé dans le modèle de dégénération induite par la lumière. Les résultats des électrorétinogrammes, les mesures de l'acuité visuelle et les analyses histologiques ont montré que l'injection du LV-V65 contribue à la maintenance de photorécepteurs fonctionnels. Au niveau de l'EP, l'absence d'albumine et la maintenance des jonctions cellulaires des cellules de l'EP ont démontré que l'intégrité de la barrière hémato-rétinienne externe est préservée suite au traitement.Par conséquent, tous les résultats obtenus indiquent que le VEGF est un médiateur important impliquée dans le processus de dégénération induit par la lumière et confirme le rôle cruciale de la balance entre les facteurs pro- et anti-angiogéniques dans la survie des photorécepteurs. Cette étude révèle également l'importance de l'intégrité de la barrière hémato-rétinienne et l'importance du lien fonctionnel et structurel entre l'EP et les photorécepteurs, essentiel pour la survie de ces derniers. Par ailleurs, Cette étude suggère que des dérèglements au niveau de l'équilibre du VEGF ne sont pas seulement impliqués dans la forme humide de la DMLA, comme déjà démontré dans des études antérieures, mais pourraient également contribuer et survenir dans des formes précoces de la DMLA, et par conséquent le VEGF représente une cible thérapeutique potentielle pour les maladies associées à des anomalies au niveau de l'EP.
Resumo:
BACKGROUND and OBJECTIVE: A non-touch laser-induced microdrilling procedure is studied on mouse zona pellucida (ZP). STUDY DESIGN/MATERIALS and METHODS: A 1.48-microns diode laser beam is focused in a 8-microns spot through a 45x objective of an inverted microscope. Mouse zygotes, suspended in a culture medium, are microdrilled by exposing their ZP to a short laser irradiation and allowed to develop in vitro. RESULTS: Various sharp-edged holes can be generated in the ZP with a single laser irradiation. Sizes can be varied by changing irradiation time (3-100 ms) or laser power (22-55 mW). Drilled zygotes present no signs of thermal damage under light and scanning electron microscopy and develop as expected in vitro, except for a distinct eight-shaped hatching behavior. CONCLUSION: The microdrilling procedure can generate standardized holes in mouse ZP, without any visible side effects. The hole formation can be explained by a local photothermolysis of the protein matrix.
Resumo:
U-Pb dating of zircons by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) is a widely used analytical technique in Earth Sciences. For U-Pb ages below 1 billion years (1 Ga), Pb-206/U-238 dates are usually used, showing the least bias by external parameters such as the presence of initial lead and its isotopic composition in the analysed mineral. Precision and accuracy of the Pb/U ratio are thus of highest importance in LA-ICPMS geochronology. We consider the evaluation of the statistical distribution of the sweep intensities based on goodness-of-fit tests in order to find a model probability distribution fitting the data to apply an appropriate formulation for the standard deviation. We then discuss three main methods to calculate the Pb/U intensity ratio and its uncertainty in the LA-ICPMS: (1) ratio-of-the-mean intensities method, (2) mean-of-the-intensity-ratios method and (3) intercept method. These methods apply different functions to the same raw intensity vs. time data to calculate the mean Pb/U intensity ratio. Thus, the calculated intensity ratio and its uncertainty depend on the method applied. We demonstrate that the accuracy and, conditionally, the precision of the ratio-of-the-mean intensities method are invariant to the intensity fluctuations and averaging related to the dwell time selection and off-line data transformation (averaging of several sweeps); we present a statistical approach how to calculate the uncertainty of this method for transient signals. We also show that the accuracy of methods (2) and (3) is influenced by the intensity fluctuations and averaging, and the extent of this influence can amount to tens of percentage points; we show that the uncertainty of these methods also depends on how the signal is averaged. Each of the above methods imposes requirements to the instrumentation. The ratio-of-the-mean intensities method is sufficiently accurate provided the laser induced fractionation between the beginning and the end of the signal is kept low and linear. We show, based on a comprehensive series of analyses with different ablation pit sizes, energy densities and repetition rates for a 193 nm ns-ablation system that such a fractionation behaviour requires using a low ablation speed (low energy density and low repetition rate). Overall, we conclude that the ratio-of-the-mean intensities method combined with low sampling rates is the most mathematically accurate among the existing data treatment methods for U-Pb zircon dating by sensitive sector field ICPMS.
Resumo:
OBJECTIVE: Although recent experience suggests that transmyocardial laser revascularisation (TMLR) relieves angina, its mechanism of action remains undefined. We examined its functional effects and analysed its morphological features in an animal model of acute ischaemia. METHODS: A total of 15 pigs were randomised to ligation of left marginal arteries (infarction group, n = 5), to TMLR of the left lateral wall using a holmium:yttrium-aluminium garnet (Ho:YAG) laser (laser group, n = 5), and to both (laser-infarction group, n = 5). All the animals were sacrificed 1 month after the procedure. Haemodynamics and echocardiography with segmental wall motion score were carried out at both time intervals (scale 0-3: 0, normal; 1, hypokinesia; 2, akinesia; 3, dyskinesia). Histology of the involved area was analysed. RESULTS: Laser group showed no change of the segmental wall motion score of the involved area 30 min after the laser channels were made (score: 0 +/- 0). Infarction and laser infarction groups both showed a persistent and definitive increase of the segmental wall motion score (at 30 min: 1.6 +/- 0.3 and 2 +/- 0, respectively; at 1 month: 1.8 +/- 0.2 and 1.8 +/- 0.4, respectively). These increases were all statistically significant in comparison with baseline values (P < 0.5), however comparison between infarction and laser-infarction groups showed no significant difference. On macroscopic examination of the endocardial surface, no channel was opened. On histology, there were signs of neovascularisation around the channels in the laser group, whereas in the laser-infarction group the channels were embedded in the infarction scar. CONCLUSIONS: In this acute pig model, TMLR did not provide improvement of contractility of the ischaemic myocardium. To the degree that the present study pertains to the clinical setting, the results suggest that mechanisms other than blood flow through the channels should be considered, such as a laser-induced triggering of neovascularisation or neural destruction.
Resumo:
PURPOSE: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or "wet" Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. METHODS: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with "wet" AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8(+/-) mice expressing ß-galactosidase. Aged Mfge8(+/-) and Mfge8(-/-) mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. RESULTS: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8(-/-) mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8(-/-) mice as compared to controls. CONCLUSIONS: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8(-/-) mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD.
Resumo:
We demonstrate the use of laser-induced fluorescence confocal spectroscopy to measure analyte-stimulated enhanced green fluorescent protein (egfp) synthesis by genetically modified Escherichia coli bioreporter cells. Induction is measured in cell lysates and, since the spectroscopic focal volume is approximately the size of one bioreporter cell, also in individual live bacteria. This is, to our knowledge, the first ever proof-of-concept work utilizing instrumentation with single-molecule detection capability to monitor bioreporter response. Although we use arsenic inducible bioreporters here, the method is extensible to gfp/egfp bioreporters that are responsive to other substances.
Resumo:
For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine.
Resumo:
Neuron-astrocyte reciprocal communication at synapses has emerged as a novel signalling pathway in brain function. Astrocytes sense the level of synaptic activity and, in turn, influence its efficacy through the regulated release of ''glio- transmitters'' such as glutamate, ATP or D-serine. A calcium- dependent exocytosis is proposed to drive the release of gliotransmitters but its existence is still debated. To shed light onto the mechanisms controlling the storage and the release of gliotransmitters and namely D-serine, we have developed a new method for the immunoisolation of synaptobrevin 2-positive vesicles from rat cortical astrocytes in culture. The purified organelles are clear round shape vesicles of excellent purity as judged by electron microscopy. Immunoblotting analysis revealed that isolated vesicles contain most of the major proteins already described for neuron-derived vesicles. In addition, we have analyzed the content for various amino acids of these vesicles by means of chiral capillary electro- phoresis coupled to laser-induced fluorescence detection and liquid chromatography coupled to mass spectrometry. Post- embedding immunogold labelling of the rat neocortex and hippocampus further revealed the expression of D-serine and glutamate in astrocyte processes contacting excitatory sy- napses. Our results provide significant support for the existence of secretory glial vesicles storing chemical substances like D- serine and glutamate and thus point to the co-release of amino acids by exocytosis in astrocytes.
Resumo:
Neuron-astrocyte reciprocal communication at synapses has emerged as a novel signalling pathway in brain function. Astrocytes sense the level of synaptic activity and, in turn, influence its efficacy through the regulated release of 'gliotransmitters' such as glutamate, ATP or D-serine. A calcium-dependent exocytosis is proposed to drive the release of gliotransmitters but its existence is still debated. Over the last years, we have been studying the molecular determinants governing D-serine release from glia using different approaches. Using a novel bioassay for D-serine, we have been able to show that D-serine release occurs mainly through a calcium- and SNARE proteindependent mechanism just supporting the idea that this amino acid is released by exocytosis from glia. We next have pursued our exploration by confocal imaging and tracking of the exocytotic routes for Dserine- mediated gliotransmission and have shown that D-serine releasable pools are confined to synaptobrevin2/cellubrevin-bearing vesicles. To shed light onto the mechanisms controlling the storage and the release of gliotransmitters and namely D-serine, we have developed a new method for the immunoisolation of synaptobrevin 2- positive vesicles from rat cortical astrocytes in culture while preserving their content in gliotransmitters. The purified organelles are clear round shape vesicles of excellent purity with homogeneous size (40 nm) as judged by electron microscopy. Immunoblotting analysis revealed that isolated vesicles contain most of the major proteins already described for neuron-derived vesicles like synaptic vesicle protein 2 (SV2) and the proton pump H?-ATPase. In addition, we have analyzed the content for various amino acids of these vesicles by means of chiral capillary electrophoresis coupled to laser-induced fluorescence detection. The purified vesicles contain large amount of D-serine. We also detect peaks corresponding to unidentified compounds that may correspond to others amino acids. Postembedding immunogold labelling of the rat neocortex further revealed the expression of D-serine in astrocytes processes contacting excitatory synapses. Finally, we have examined the uptake properties for Dserine and glutamate inside the isolated glial vesicles. Our results provide significant support for the existence of an uptake system for D-serine in secretory glial vesicles and for the storage of chemical substances like D-serine and glutamate. 11th International Congress on Amino Acids, Peptides and Proteins 763 123
Resumo:
The pro-inflammatory cytokine IL-1β has been shown to promote angiogenesis. It can have a neurotoxic or neuroprotective effect. Here, we have studied the expression of IL-1β in vivo and the effect of the IL-1 receptor antagonist on choroidal neovascularization (CNV) and retinal degeneration (RD). IL-1β expression significantly increased after laser injury (real time PCR) in C57BL/6 mice, in the C57BL/6 Cx3cr1(-/-) model of age-related macular degeneration (enzyme-linked immunoabsorbent assay), and in albino Wistar rats and albino BALB Cx3cr1(+/+) and Cx3cr1(-/-) mice (enzyme-linked immunoabsorbent assay) after light injury. IL-1β was localized to Ly6G-positive, Iba1-negative infiltrating neutrophils in laser-induced CNV as determined by IHC. IL-1 receptor antagonist treatment significantly inhibited CNV but did not affect Iba1-positive macrophage recruitment to the injury site. IL-1β significantly increased endothelial cell outgrowth in aortic ring assay independently of vascular endothelial growth factor, suggesting a direct effect of IL-1β on choroidal endothelial cell proliferation. Inhibition of IL-1β in light- and laser-induced RD models did not alter photoreceptor degeneration in Wistar rats, C57BL/6 mice, or RD-prone Cx3cr1(-/-) mice. Our results suggest that IL-1β inhibition might represent a valuable and safe alternative to inhibition of vascular endothelial growth factor in the control of CNV in the context of concomitant photoreceptor degeneration as observed in age-related macular degeneration.