3 resultados para Lancer du poids -- Belgique -- Anvers (Belgique)
em Université de Lausanne, Switzerland
Resumo:
Despite its small fraction of the total body weight (2%), the brain contributes for 20% and 25% respectively of the total oxygen and glucose consumption of the whole body. Indeed, glucose has been considered the energy substrate par excellence for the brain. However, evidence accumulated over the last half century revealed an important role for the monocarboxylate lactate in fulfilling the energy needs of neurons. This is particularly true during physiological neuronal activation and in pathological conditions. Lactate transport into and out of the cell is mediated by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, only three of them have been well characterized: MCT2 is the predominant neuronal isoform, while the other non¬neuronal cell types of the brain express the ubiquitous isoform MCT1. Quite recently, the MCT4 isoform has been described in astrocytes. Due to its high transport capacity compared to the other two isoforms, MCT4 is particularly adapted for glycolytic cells. Because of its recent discovery in the brain, nothing was known about its regulation in the central nervous system. Here we show that MCT4 is regulated by oxygen levels in primary cultures of astrocytes in a time- and concentration-dependent manner via the hypoxia inducible factor-la (HIF-la). Moreover, we showed that MCT4 expression is essential for astrocyte survival under low oxygen conditions. In parallel, we investigated the possible implication of the pyruvate kinase isoform Pkm2, a strong enhancer of glycolysis, in its regulation. Then we showed that MCT4 expression, as well as the expression of the other two MCT isoforms, is altered in a murine model of stroke. Surprisingly, neurons started to express MCT4, as well as MCT1, under such conditions. Altogether, these data suggest that MCT4, due to its high transport capacity for lactate, may be the isoform that enables cells to operate a major metabolic adaptation in response to pathological situations that alter metabolic homeostasis of the brain. -- Le cerveau représente 2% du poids corporel total, mais il contribue pour 20% de la consommation totale d'oxygène et 25% de celle de glucose au repos. Le glucose est considéré comme le substrat énergétique par excellence pour le cerveau. Néanmoins, depuis un demi- siècle maintenant, de plus en plus de travaux ont démontré que le lactate joue un rôle majeur dans le métabolisme cérébral et est capable du subvenir aux besoins énergétiques des neurones. Le lactate est tout particulièrement nécessaire pendant l'activation neuronale ainsi qu'en situation pathologique. Le transport du lactate à travers la barrière hématoencéphalique ainsi qu'à travers les membranes cellulaires est assuré par la famille des transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, uniquement trois d'entre eux ont été décrits: MCT2 est considéré comme le transporteur neuronal, alors que les autres types cellulaires qui constituent le cerveau expriment l'isoforme ubiquitaire MCT1. Récemment, l'isoforme MCT4 a été rapportée sur les astrocytes. Dû à sa grande capacité de transport pour le lactate, MCT4 est tout particulièrement adapté pour soutenir le métabolisme des cellules hautement glycolytiques, comme les astrocytes. En raison de sa toute récente découverte, les aspects comprenant sa régulation et son rôle dans le cerveau sont pour l'instant méconnus. Les résultats exposés dans ce travail démontrent dans un premier temps que l'expression de MCT4 est régulée par les niveaux d'oxygène dans les cultures d'astrocytes corticaux par le biais du facteur de transcription HIF-la. De plus, nous avons démontré que l'expression de MCT4 est essentielle à la survie des astrocytes quand le niveau d'oxygénation baisse. En parallèle, des résultats préliminaires suggèrent que l'isoforme 2 de la pyruvate kinase, un puissant régulateur de la glycolyse, pourrait jouer un rôle dans la régulation de MCT4. Dans la deuxième partie du travail nous avons démontré que l'expression de MCT4, ainsi que celle de MCT1 et MCT2, est altérée dans un modèle murin d'ischémie cérébrale. De façon surprenante, les neurones expriment MCT4 dans cette condition, alors que ce n'est pas le cas en condition physiologique. En tenant compte de ces résultats, nous suggérons que MCT4, dû à sa particulièrement grande capacité de transport pour le lactate, représente le MCT qui permet aux cellules du système nerveux central, notamment les astrocytes et les neurones, de s'adapter à de très fortes perturbations de l'homéostasie métabolique du cerveau qui surviennent en condition pathologique.
Resumo:
Introduction : Les fractures du membre inférieur (MI) de l'enfant traitées par immobilisation plâtrée engendrent une modification significative de la mobilité exacerbée en cas d'obésité. L'accéléromètre est un outil d'évaluation du degré d'activité physique (AP) de l'enfant scientifiquement validé. Il n'a jamais fait l'objet d'étude chez un enfant ayant souffert d'une fracture du MI. Le but de ce travail était d'identifier les problèmes dans l'utilisation d'un accéléromètre comme moyen de mesure de l'AP après fracture nécessitant une décharge du MI. Une adaptation de la réhabilitation post-traumatique en fonction du BMI pourrait alors être proposée. Méthode : Identification d'enfants âgés de 8 et 15 ans, victimes d'une fracture du membre inférieur, consultant aux urgences de l'Hôpital de l'Enfance d'octobre 2013 à mai 2014 et nécessitant une décharge post-traumatique. Etaient exclus les enfants polytraumatisés ou souffrants d'un déficit mental. Données pré-requises des patients: âge, poids, taille, sexe, mécanisme de l'accident, type de fracture et traitement. Proposition de port d'un Actiwatch® Spectrum au poignet et cheville pour la période de remobilisation en décharge. Identification des avantages et problèmes liés à l'usage de l'appareil durant les premiers 30 jours de la période de réhabilitation. Importance : L'absence totale d'étude sur la mobilité post-fracture, la complexité des problèmes liés à la marche en décharge, les contraintes de l'immobilisation plâtrée et la prévalence grandissante de l'obésité pédiatrique justifient la recherche d'un moyen fiable pour quantifier la mobilité d'un enfant en décharge après traumatisme du MI. Résultats : Sur 43 fractures du MI traitées à l'HEL durant la période de l'étude, 13 enfants identifiés, dont 1 exclu pour maladie psychiatrique, 1 refus de participation, 2 transferts immédiats, 2 non inclus pour causes pratiques. Sept garçons âgés de 11 à 16 ans ont accepté le port de l'Actiwatch® pour une durée variant entre 7 et 27 jours (moyenne 15). Nombre d'activités (NA) médians de 5 enfants: 171,79 ±105,37 [cpm]* à J1 et 219,48 ±145,52 [cpm] à J5. NA totales médianes sur 24h : 114'072±44'791 [cpm] à J1 et 234'452 ±134'775 [cpm] à J5. Une dynamique de regain de mobilité est mise en évidence avec intensités maximales et minimales du nombre d'activités pour chacun. La médiane du temps de sommeil des 5 enfants était de 716± 45,5 [mn]. Les problèmes rencontrés ont été d'ordre mécanique (Un Actiwatch® fut défectueux), d'ordre pratique (un perdu et rendu tardivement, un port intermittent, une réaction allergique au bracelet à 4j de port). Conclusions La compliance à l'utilisation de l'Actiwatch® sur toute la durée de la décharge n'était pas optimale. La mobilité moyenne des enfants était objectivable de par leur dynamique, leur intensité maximale et minimale et comparables vis-à-vis de certaines études. Une différence avec les sujets en surpoids est observable. La durée de sommeil de chaque enfant suggère que l'antalgie administrée en cours de traitement est suffisante. Utiliser ce capteur de manière prolongée et sur un grand collectif d'enfants serait un moyen fiable et simple d'objectiver la dynamique de reprise de l'activité physique chez ces patients. Profil de l'étude : observation de cas.