187 resultados para Laminar flow
em Université de Lausanne, Switzerland
Resumo:
We present a new lab-on-a-chip system for electrophysiological measurements on Xenopus oocytes. Xenopus oocytes are widely used host cells in the field of pharmacological studies and drug development. We developed a novel non-invasive technique using immobilized non-devitellinized cells that replaces the traditional "two-electrode voltage-clamp" (TEVC) method. In particular, rapid fluidic exchange was implemented on-chip to allow recording of fast kinetic events of exogenous ion channels expressed in the cell membrane. Reducing fluidic exchange times of extracellular reagent solutions is a great challenge with these large millimetre-sized cells. Fluidic switching is obtained by shifting the laminar flow interface in a perfusion channel under the cell by means of integrated poly-dimethylsiloxane (PDMS) microvalves. Reagent solution exchange times down to 20 ms have been achieved. An on-chip purging system allows to perform complex pharmacological protocols, making the system suitable for screening of ion channel ligand libraries. The performance of the integrated rapid fluidic exchange system was demonstrated by investigating the self-inhibition of human epithelial sodium channels (ENaC). Our results show that the response time of this ion channel to a specific reactant is about an order of magnitude faster than could be estimated with the traditional TEVC technique.
Resumo:
The PulseCath iVAC 3L? left ventricular assist device is an option to treat transitory left heart failure or dysfunction post-cardiac surgery. Assisted blood flow should reach up to 3 l/min. In the present in vitro model exact pump flow, depending on various frequencies and afterload was examined. Optimal flow was achieved with inflation/deflation frequencies of about 70-80/min. The maximal flow rate was achieved at about 2.5 l/min with a minimal afterload of 22 mmHg. Handling of the device was easy due to the connection to a standard intra-aortic balloon pump console. With increasing afterload (up to a simulated mean systemic pressure of 66 mmHg) flow rate and cardiac support are in some extent limited.
Resumo:
AIMS: Bicuspid aortic valve (BAV) causes complex flow patterns in the ascending aorta (AAo), which may compromise the accuracy of flow measurement by phase-contrast magnetic resonance (PC-MR). Therefore, we aimed to assess and compare the accuracy of forward flow measurement in the AAo, where complex flow is more dominant in BAV patients, with flow quantification in the left ventricular outflow tract (LVOT) and the aortic valve orifice (AV), where complex flow is less important, in BAV patients and controls. METHODS AND RESULTS: Flow was measured by PC-MR in 22 BAV patients and 20 controls at the following positions: (i) LVOT, (ii) AV, and (iii) AAo, and compared with the left ventricular stroke volume (LVSV). The correlation between the LVSV and the forward flow in the LVOT, the AV, and the AAo was good in BAV patients (r = 0.97/0.96/0.93; P < 0.01) and controls (r = 0.96/0.93/0.93; P < 0.01). However, in relation with the LVSV, the forward flow in the AAo was mildly underestimated in controls and much more in BAV patients [median (inter-quartile range): 9% (4%/15%) vs. 22% (8%/30%); P < 0.01]. This was not the case in the LVOT and the AV. The severity of flow underestimation in the AAo was associated with flow eccentricity. CONCLUSION: Flow measurement in the AAo leads to an underestimation of the forward flow in BAV patients. Measurement in the LVOT or the AV, where complex flow is less prominent, is an alternative means for quantifying the systolic forward flow in BAV patients.
Resumo:
To assess the variability of the response to exogenous atrial natriuretic peptide (ANP), it was infused at the rate of 1 microgram/min for 2 h in 6 salt-loaded normal volunteers under controlled conditions on 2 occasions at an interval of 1 week. The effect on solute excretion and the haemodynamic and endocrine actions were highly reproducible. The constant ANP infusion caused a delayed and prolonged excretion of sodium, chloride and calcium, no change in potassium or phosphate excretion or in glomerular filtration rate but a marked decrease in renal plasma flow. Blood pressure, heart rate and the plasma levels of angiotensin II, aldosterone, arginine vasopressin and plasma renin activity were unaltered. The effect of a 2-h infusion of ANP 0.5 microgram/min or its vehicle on apparent hepatic blood flow (HBF) was also studied in 14 normal volunteers by measuring the indocyanine green clearance. A 21% decrease in HBF was observed in subjects who received the ANP infusion (p less than 0.01 vs vehicle). Thus, ANP infused at a dose that did not lower blood pressure decreased both renal and liver blood flow in normotensive volunteers. The renal and endocrine responses to ANP were reproducible over a 1-week interval.
Resumo:
Hybridization has played a central role in the evolutionary history of domesticated plants. Notably, several breeding programs relying on gene introgression from the wild compartment have been performed in fruit tree species within the genus Prunus but few studies investigated spontaneous gene flow among wild and domesticated Prunus species. Consequently, a comprehensive understanding of genetic relationships and levels of gene flow between domesticated and wild Prunus species is needed. Combining nuclear and chloroplastic microsatellites, we investigated the gene flow and hybridization among two key almond tree species, the cultivated Prunus dulcis and one of the most widespread wild relative Prunus orientalis in the Fertile Crescent. We detected high genetic diversity levels in both species along with substantial and symmetric gene flow between the domesticated P. dulcis and the wild P. orientalis. These results were discussed in light of the cultivated species diversity, by outlining the frequent spontaneous genetic contributions of wild species to the domesticated compartment. In addition, crop-to-wild gene flow suggests that ad hoc transgene containment strategies would be required if genetically modified cultivars were introduced in the northwestern Mediterranean.
Resumo:
In this paper we present a prototype of a control flow for an a posteriori drug dose adaptation for Chronic Myelogenous Leukemia (CML) patients. The control flow is modeled using Timed Automata extended with Tasks (TAT) model. The feedback loop of the control flow includes the decision-making process for drug dose adaptation. This is based on the outputs of the body response model represented by the Support Vector Machine (SVM) algorithm for drug concentration prediction. The decision is further checked for conformity with the dose level rules of a medical guideline. We also have developed an automatic code synthesizer for the icycom platform as an extension of the TIMES tool.
Resumo:
BACKGROUND: For over 50 years, radiocephalic wrist arteriovenous fistulae (RCAVF) have been the primary and best vascular access for haemodialysis. Nevertheless, early failure due to thrombosis or non-maturation is a major complication resulting in their abandonment. This prospective study was designed to investigate the predictive value of intra-operative blood flow on early failure of primary RCAVF before the first effective dialysis. METHODS: We enrolled patients undergoing creation of primary RCAVF for haemodialysis based on the pre-operative ultrasound vascular mapping discussed in a multidisciplinary approach. Intra-operative blood flow measurement was systematically performed once the anastomosis had been completed using a transit-time ultrasonic flowmeter. During the follow-up, blood flow was estimated by colour flow ultrasound at various intervals. Any events related to the RCAVF were recorded. RESULTS: Autogenous RCAVFs (n = 58) in 58 patients were constructed and followed up for an average of 30 days. Thrombosis and non-maturation occurred in eight (14%) and four (7%) patients, respectively. The intra-operative blood flow in functioning RCAVFs was significantly higher compared to non-functioning RCAVFs (230 vs 98 mL/min; P = 0.007), as well as 1 week (753 vs 228 mL/min; P = 0.0008) and 4 weeks (915 vs 245 mL/min, P < 0.0001) later. Blood flow volume measurements with a cut-off value of 120 mL/min had a sensitivity of 67%, specificity of 75% and positive predictive value of 91%. CONCLUSIONS: Blood flow <120 mL has a good predictive value for early failure in RCAVF. During the procedure, this cut-off value may be used to select appropriately which RCAVF should be investigated in the operation theatre in order to correct in real time any abnormality.
Resumo:
Debris flow susceptibility mapping at a regional scale has been the subject of various studies. The complexity of the phenomenon and the variability of local controlling factors limit the use of process-based models for a first assessment. GISbased approaches associating an automatic detection of the source areas and a simple assessment of the debris flow spreading may provide a substantial basis for a preliminary susceptibility assessment at the regional scale. The use of a digital elevation model, with a 10 m resolution, for the Canton de Vaud territory (Switzerland), a lithological map and a land use map, has allowed automatic identification of the potential source areas. The spreading estimates are based on basic probabilistic and energy calculations that allow to define the maximal runout distance of a debris flow.
Resumo:
BACKGROUND: According to recent guidelines, patients with coronary artery disease (CAD) should undergo revascularization if significant myocardial ischemia is present. Both, cardiovascular magnetic resonance (CMR) and fractional flow reserve (FFR) allow for a reliable ischemia assessment and in combination with anatomical information provided by invasive coronary angiography (CXA), such a work-up sets the basis for a decision to revascularize or not. The cost-effectiveness ratio of these two strategies is compared. METHODS: Strategy 1) CMR to assess ischemia followed by CXA in ischemia-positive patients (CMR + CXA), Strategy 2) CXA followed by FFR in angiographically positive stenoses (CXA + FFR). The costs, evaluated from the third party payer perspective in Switzerland, Germany, the United Kingdom (UK), and the United States (US), included public prices of the different outpatient procedures and costs induced by procedural complications and by diagnostic errors. The effectiveness criterion was the correct identification of hemodynamically significant coronary lesion(s) (= significant CAD) complemented by full anatomical information. Test performances were derived from the published literature. Cost-effectiveness ratios for both strategies were compared for hypothetical cohorts with different pretest likelihood of significant CAD. RESULTS: CMR + CXA and CXA + FFR were equally cost-effective at a pretest likelihood of CAD of 62% in Switzerland, 65% in Germany, 83% in the UK, and 82% in the US with costs of CHF 5'794, euro 1'517, £ 2'680, and $ 2'179 per patient correctly diagnosed. Below these thresholds, CMR + CXA showed lower costs per patient correctly diagnosed than CXA + FFR. CONCLUSIONS: The CMR + CXA strategy is more cost-effective than CXA + FFR below a CAD prevalence of 62%, 65%, 83%, and 82% for the Swiss, the German, the UK, and the US health care systems, respectively. These findings may help to optimize resource utilization in the diagnosis of CAD.
Resumo:
In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler-Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer.