3 resultados para Labour movement--Ontario--St. Catharines Region--History

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Whole-body vibration (WBV) exercise is progressively adopted as an alternative therapeutic modality for enhancing muscle force and muscle activity via neurogenic potentiation. So far, possible changes in the recruitment patterns of the trunk musculature after WBV remain undetermined. The main objective of this study was to evaluate the short-term effects of a single WBV session on trunk neuromuscular responses in patients with chronic low back pain (cLBP) and healthy participants. METHODS: Twenty patients with cLBP and 21 healthy participants performed 10 trunk flexion-extensions before and after a single WBV session consisting of five 1-minute vibration sets. Surface electromyography (EMG) of erector spinae at L2-L3 and L4-L5 and lumbopelvic kinematic variables were collected during the trials. Data were analyzed using 2-way mixed analysis of variance models. RESULTS: The WBV session led to increased lumbar EMG activity during the flexion and extension phases but yielded no change in the quiet standing and fully flexed phases. Kinematic data showed a decreased contribution to the movement of the lumbar region in the second extension quartile. These effects were not different between patients with cLBP and healthy participants. CONCLUSIONS: Increased lumbar EMG activity after a single WBV session most probably results from potentiation effects of WBV on lumbar muscles reflex responses. Decreased EMG activity in full trunk flexion, usually observed in healthy individuals, was still present after WBV, suggesting that the ability of the spine stabilizing mechanisms to transfer the extension torque from muscles to passive structures was not affected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper addresses the migration behaviours of young university graduates from a rural region in Switzerland. Based on a questionnaire survey, it compares graduates' current place of residence (i.e. whether or not they returned to their home region) with characteristics related to their socio-familial, migration and professional trajectories. The propensity to return varies not only according to labour market variables (employment opportunities), but also to other factors, some of which have even more influence than job opportunities. The graduates' life course position (kind of household), their partners' characteristics (level of education and home region) and their family background (socio-economic status and history of migration) all play a central role. On the whole, results show that migration appears as a selective and complex process embedded in the life course of graduates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Turkish part of the Tethyan realm is represented by a series of terranes juxtaposed through Alpine convergent movements and separated by complex suture zones. Different terranes can be defined and characterized by their dominant geological background. The Pontides domain represents a segment of the former active margin of Eurasia, where back-arc basins opened in the Triassic and separated the Sakarya terrane from neighbouring regions. Sakarya was re-accreted to Laurasia through the Balkanic mid-Cretaceous orogenic event that also affected the Rhodope and Strandja zones. The whole region from the Balkans to the Caucasus was then affected by a reversal of subduction and creation of a Late Cretaceous arc before collision with the Anatolian domain in the Eocene. If the Anatolian terrane underwent an evolution similar to Sakarya during the Late Paleozoic and Early Triassic times, both terranes had a diverging history during and after the Eo-Cimmerian collision. North of Sakarya, the Küre back-arc was closed during the Jurassic, whereas north of the Anatolian domain, the back-arc type oceans did not close before the Late Cretaceous. During the Cretaceous, both domains were affected by ophiolite obduction, but in very different ways: north directed diachronous Middle to Late Cretaceous mélange obduction on the Jurassic Sakarya passive margin; Senonian synchronous southward obduction on the Triassic passive margin of Anatolia. From this, it appears that the Izmir-Ankara suture, currently separating both terranes, is composite, and that the passive margin of Sakarya is not the conjugate margin of Anatolia. To the south, the Cimmerian Taurus domain together with the Beydağları domain (part of the larger Greater Apulian terrane), were detached from north Gondwana in the Permian during the opening of the Neotethys (East-Mediterranean basin). The drifting Cimmerian blocks entered into a soft collision with the Anatolian and related terranes in the Eo-Cimmerian orogenic phase (Late Triassic), thus suturing the Paleotethys. At that time, the Taurus plate developed foreland-type basins, filled with flysch-molasse deposits that locally overstepped the lower plate Taurus terrane and were deposited in the opening Neotethys to the south. These olistostromal deposits are characterized by pelagic Carboniferous and Permian material from the Paleotethys suture zone found in the Mersin mélange. The latter, as well as the Antalya and Mamonia domains are represented by a series of exotic units now found south of the main Taurus range. Part of the Mersin exotic material was clearly derived from the former north Anatolian passive margin (Huğlu-type series) and re-displaced during the Paleogene. This led us to propose a plate tectonic model where the Anatolian ophiolitic front is linked up with the Samail/Baër-Bassit obduction front found along the Arabian margin. The obduction front was indented by the Anatolian promontory whose eastern end was partially subducted. Continued slab roll-back of the Neotethys allowed Anatolian exotics to continue their course southwestward until their emplacement along the Taurus southern margin (Mersin) and up to the Beydağları promontory (Antaya-Mamonia) in the latest Cretaceous-Paleocene. The supra-subduction ocean opening at the back of the obduction front (Troodos-type Ocean) was finally closed by Eocene north-south shortening between Africa and Eurasia. This brought close to each other Cretaceous ophiolites derived from the north of Anatolia and those obducted on the Arabian promontory. The latter were sealed by a Maastrichtian platform, and locally never affected by Alpine tectonism, whereas those located on the eastern Anatolian plate are strongly deformed and metamorphosed, and affected by Eocene arc magmatism. These observations help to reconstruct the larger frame of the central Tethyan realm geodynamic evolution.