30 resultados para LOSARTAN
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: Losartan has been shown to increase urinary uric acid excretion and hence to lower serum uric acid levels. The purposes of the present study were: (1) to evaluate the effects of losartan on serum uric acid in hypertensive patients with hyperuricemia and gout, (2) to compare the effects of losartan with those of irbesartan, another angiotensin II receptor antagonist and (3) to evaluate whether losartan 50 mg b.i.d. has a greater impact on serum uric acid levels than losartan 50 mg once a day. METHODS: Thirteen hypertensive patients with hyperuricaemia and gout completed this prospective, randomized, double-blind, cross-over study. Uric acid-lowering drugs were stopped 3 weeks before the beginning of the study. Patients were randomized to receive either losartan 50 mg or irbesartan 150 mg once a day, for 4 weeks. During this phase, a placebo was given in the evening. After 4 weeks, the dose was increased to losartan 50 mg b.i.d., or irbesartan 150 mg b.i.d. for another 4 week period. Subsequently, the patients were switched to the alternative treatment modality. Enalapril (20 mg o.d.) was given during the run-in period and between the two treatment phases. Serum and urinary uric acid were measured at the beginning and at the end of each treatment phase. RESULTS: Our results show that losartan 50 mg once daily decreased serum uric acid levels from 538 +/- 26 to 491 +/- 20 micromol/l (P < 0.01). Irbesartan had no effect on serum uric acid. Increasing the dose of losartan from 50 mg o.d. to 50 mg twice a day, did not further decrease serum uric acid. This may in part be due to a low compliance to the evening dose as measured with an electronic device. Indeed, whatever the prescribed drug, the mean compliance of the evening dose was always significantly lower than that of the morning dose. The uricosuric effect of losartan appears to decrease with time when a new steady state of lower serum uric acid is reached. CONCLUSIONS: In contrast to irbesartan, losartan was uricosuric and decreased serum uric acid levels. Losartan 50 mg b.i.d. did not produce a greater fall in serum uric acid than losartan once a day. Losartan might be a useful therapeutic tool to control blood pressure and reduce serum uric acid levels in hypertensive patients with hyperuricaemia and gout.
Resumo:
Introduction: Blockade of the renin-angiotensin system is one of the major therapeutic strategies in the management of patients with essential hypertension, congestive heart failure and diabetic as well as non-diabetic renal diseases. As the first angiotensin II receptor blocker (ARB) on the market, losartan belongs to the most frequently prescribed ARB. Area covered : The present review examines the pharmacokinetics of losartan with a special discussion on the dose of losartan that should be used in clinical practice to obtain the maximal benefits of the drug. Readers are provided with arguments suggesting that the dose of 50 mg losartan is probably too low and that losartan should preferably be prescribed at the dose of 100 mg/day or higher. Expert opinion : Losartan is an effective antagonist of angiotensin II AT(1) receptors which has been shown to provide important clinical benefits in patients with hypertension, congestive heart failure and renal diseases. Losartan should be prescribed at the dose of 100 mg/day and the use of higher doses should be reconsidered in future studies to improve its clinical efficacy.
Resumo:
INTRODUCTION: The evaluation of a new drug in normotensive volunteers provides important pharmacodynamic and pharmacokinetic information as long as the compound has a specific mechanism of action which can be evaluated in healthy subjects as well as in patients. The purpose of the present paper is to discuss the results that have been obtained in normal volunteers with the specific angiotensin II receptor antagonist, losartan potassium. DOSE-FINDING: Over the last few years, studies in normotensive subjects have demonstrated that the minimal dose of losartan that produces maximal efficacy is 40-80 mg. Losartan has a long duration of action and its ability to produce a sustained blockade of the renin-angiotensin system is due almost exclusively to the active metabolite E3174. HORMONAL EFFECTS: Angiotensin II receptor blockade with losartan induces an expected increase in plasma renin activity and plasma angiotensin II levels. A decrease in plasma aldosterone levels has been found only with a high dose of losartan (120 mg). RENAL AND BLOOD PRESSURE EFFECTS: In normotensive subjects, losartan has little or no effect on blood pressure unless the subjects are markedly salt-depleted. Losartan causes no change in the glomerular filtration rate and either no modification or only a slight increase in renal blood flow. Losartan significantly increases urinary sodium excretion, however, and surprisingly produces a transient rise in urinary potassium excretion. Finally, losartan increases uric acid excretion and lowers plasma uric acid levels. CONCLUSIONS: These results suggest that losartan is an effective angiotensin II receptor antagonist in normal subjects. Its safety and clinical efficacy in hypertensive patients will be addressed in large clinical trials.
Resumo:
We investigated the tolerability and angiotensin II antagonist activity of oral DuP 532 in healthy male subjects. DuP 532 (1 to 200 mg) was well tolerated, with no effect on blood pressure or heart rate. Compared with losartan (100 mg), DuP 532 (200 mg) was a weak antagonist of pressor responses to intravenous angiotensin II. Maximum inhibition of diastolic pressor response was 86% (95% confidence interval [CI], 84%, 88%) approximately 4.6 hours after losartan and 48% (95% CI, 38%, 56%) 8.7 hours after DuP 532. Twenty-four hours after dosing, inhibition by losartan and DuP 532 was similar (40% to 45%). DUP 532 is extensively bound in human plasma, with an in vitro free fraction of 0.06. Although DuP 532 and EXP3174 (losartan's active metabolite) have similar AT1-receptor potency, and plasma concentrations of DuP 532 were much greater than losartan/EXP3174, the level of antagonism was much less for DuP 532. These results indicate that multiple factors determine the in vivo potency of angiotensin II antagonists, including affinity for and distribution to the receptor as modulated by plasma binding.
Resumo:
The aim of this study was to investigate the relationships between plasma concentrations of losartan, an orally active angiotensin II inhibitor, its active metabolite EXP3174, and angiotensin II blockade. Six healthy subjects received single oral doses of 40, 80, or 120 mg losartan and placebo at 1-week intervals in a crossover study. Angiotensin II blockade was assessed by the blood pressure response to exogenous angiotensin II before and after losartan administration. EXP3174 reached higher plasma concentrations and was eliminated more slowly than its parent compound; its levels paralleled the profile of angiotensin II blockade closer than losartan. Inhibition of the pressure response was dose dependent. The Hill-shaped relationship between response and EXP3174 concentration (or time-integrated variables) approached a plateau with 80 mg. The dose-dependent increase in plasma renin and angiotensin II exhibited a considerable individual scatter. We conclude that losartan produces a dose-dependent, effective angiotensin II blockade that is largely determined by the active metabolite EXP3174.
Resumo:
The low GFR of newborns is maintained by various factors including the renin-angiotensin system. We previously established the importance of angiotensin II in the newborn kidney, using the angiotensin-converting enzyme inhibitor perindoprilat. The present study was designed to complement these observations by evaluating the role of angiotensin-type 1 (AT(1)) receptors, using losartan, a specific AT(1)-receptor blocker. Increasing doses of losartan were infused into anesthetized, ventilated, newborn rabbits. Renal function and hemodynamic variables were assessed using inulin and para-aminohippuric acid clearances as markers of GFR and renal plasma flow, respectively. Losartan 0.1 mg/kg slightly decreased mean blood pressure (-11%) and increased diuresis (+22%). These changes can be explained by inhibition of the AT(1)-mediated vasoconstrictive and antidiuretic effects of angiotensin, and activation of vasodilating and diuretic AT(2) receptors widely expressed in the neonatal period. GFR and renal blood flow were not modified. Losartan 0.3 mg/kg decreased mean blood pressure significantly (-15%), probably by inhibiting systemic AT(1) receptors. GFR significantly decreased (-25%), whereas renal blood flow remained stable. The decrease in filtration fraction (-21%) indicates predominant efferent vasodilation. At 3 mg/kg, the systemic hypotensive effect of losartan was marked (mean blood pressure, -28%), with decreased GFR and renal blood flow (-57% and -51%, respectively), a stable filtration fraction, and an increase in renal vascular resistance by 124%. The renal response to this dose can be considered as reflex vasoconstriction of afferent and efferent arterioles, rather than specific receptor antagonism. We conclude that under physiologic conditions, the renin-angiotensin is critically involved in the maintenance of GFR in the immature kidney.
Resumo:
We assessed the blockade of the renin-angiotensin system (RAS) achieved with 2 angiotensin (Ang) antagonists given either alone at different doses or with an ACE inhibitor. First, 20 normotensive subjects were randomly assigned to 100 mg OD losartan (LOS) or 80 mg OD telmisartan (TEL) for 1 week; during another week, the same doses of LOS and TEL were combined with 20 mg OD lisinopril. Then, 10 subjects were randomly assigned to 200 mg OD LOS and 160 mg OD TEL for 1 week and 100 mg BID LOS and 80 mg BID TEL during the second week. Blockade of the RAS was evaluated with the inhibition of the pressor effect of exogenous Ang I, an ex vivo receptor assay, and the changes in plasma Ang II. Trough blood pressure response to Ang I was blocked by 35+/-16% (mean+/-SD) with 100 mg OD LOS and by 36+/-13% with 80 mg OD TEL. When combined with lisinopril, blockade was 76+/-7% with LOS and 79+/-9% with TEL. With 200 mg OD LOS, trough blockade was 54+/-14%, but with 100 mg BID it increased to 77+/-8% (P<0.01). Telmisartan (160 mg OD and 80 mg BID) produced a comparable effect. Thus, at their maximal recommended doses, neither LOS nor TEL blocks the RAS for 24 hours; hence, the addition of an ACE inhibitor provides an additional blockade. A 24-hour blockade can be achieved with an angiotensin antagonist alone, provided higher doses or a BID regimen is used.
Resumo:
OBJECTIVES: We have reported previously that 80 mg valsartan and 50 mg losartan provide less receptor blockade than 150 mg irbesartan in normotensive subjects. In this study we investigated the importance of drug dosing in mediating these differences by comparing the AT(1)-receptor blockade induced by 3 doses of valsartan with that obtained with 3 other antagonists at given doses. METHODS: Valsartan (80, 160, and 320 mg), 50 mg losartan, 150 mg irbesartan, and 8 mg candesartan were administered to 24 healthy subjects in a randomized, open-label, 3-period crossover study. All doses were given once daily for 8 days. The angiotensin II receptor blockade was assessed with two techniques, the reactive rise in plasma renin activity and an in vitro radioreceptor binding assay that quantified the displacement of angiotensin II by the blocking agents. Measurements were obtained before and 4 and 24 hours after drug intake on days 1 and 8. RESULTS: At 4 and 24 hours, valsartan induced a dose-dependent "blockade" of AT(1) receptors. Compared with other antagonists, 80 mg valsartan and 50 mg losartan had a comparable profile. The 160-mg and 320-mg doses of valsartan blocked AT(1) receptors at 4 hours by 80%, which was similar to the effect of 150 mg irbesartan. At trough, however, the valsartan-induced blockade was slightly less than that obtained with irbesartan. With use of plasma renin activity as a marker of receptor blockade, on day 8, 160 mg valsartan was equivalent to 150 mg irbesartan and 8 mg candesartan. CONCLUSIONS: These results show that the differences in angiotensin II receptor blockade observed with the various AT(1) antagonists are explained mainly by differences in dosing. When 160-mg or 320-mg doses were investigated, the effects of valsartan hardly differed from those obtained with recommended doses of irbesartan and candesartan.
Resumo:
OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.
Resumo:
Losartan is an orally active angiotensin II antangonist that selectively blocks effects mediated by the stimulation of the AT1 subtype of the angiotensin II receptor. This agent, at doses of 50-150mg/day, is as effective at lowering blood pressure as chronic angiotensin converting enzyme (ACE) inhibitors. Losartan is generally well tolerated and has an incidence of adverse effects very similar, in double-blind controlled trials, to that of placebo. It does not cause coughing, the most common side-effect of the ACE inhibitors, most probably because angiotensin II antagonism has no impact on ACE, an enzyme known to process bradykinin and other cough-inducing peptides. Losartan is a promising antihypertensive agent with the potential to become a first-line option for the treatment of patients with high blood pressure.
Resumo:
The renin-angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. Antagonizing angiotensin (Ang) II at the receptor site may produce fewer side effects than inhibition of the promiscuous converting enzyme. The present study was designed to assess in healthy human subjects the effect of LRB081, a new orally active AT1-receptor antagonist, on the pressor action of exogenous Ang II. At the same time, plasma hormones and drug levels were monitored. At 1-week intervals and in a double-blind randomized fashion, 8 male volunteers received three doses of LRB081 (10, 40, and 80 mg) and placebo. Blood pressure (BP) was measured at a finger by photoplethysmograph. The peak BP response to intravenous injection of a standard dose of Ang II was determined before and for < or = 24 h after administration of an oral dose of LRB081 or placebo. After drug administration, the blood BP response to Ang II was expressed in percent of the response before drug administration. At the same time, plasma renin activity (PRA), Ang II, aldosterone, catecholamine (radioassays), and drug levels (by high-performance liquid chromatography) were monitored. After LRB081 administration, a dose dependent inhibition of the BP response to Ang II was observed. Maximal inhibition of the systolic BP response was 54 +/- 3 (mean +/- SEM), 63 +/- 2, and 93 +/- 1% with 10, 40, and 80 mg LRB081, respectively. The time to peak was 3 h for 6 subjects and 4 and 6 h for 2 others. Preliminary plasma half-life (t1/2) was calculated at 2 h. With the highest dose, the inhibition remained significant for 24 h (31 +/- 5%, p < 0.05). Maximal BP-blocking effect and maximal plasma drug level coincided, suggesting that the unmetabolized LRB081 is responsible for the antagonistic effect. PRA and Ang II increased dose dependently after LRB081 intake. Aldosterone, epinephrine, and norepinephrine concentrations remained unchanged. No clinically significant adverse reaction was observed during the study. LRB081 is a well-tolerated, orally active, potent, and long-acting Ang II receptor antagonist. Unlike in the case of losartan, no active metabolite of LRB081 has been shown to be responsible for the main effects.
Resumo:
An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans.
Resumo:
Pharmacological treatment of hypertension represents a cost-effective way of preventing cardiovascular and renal complications. To benefit maximally from antihypertensive treatment, blood pressure should be brought to below 140/90 mmHg in every hypertensive patient, and even lower (< 130/80 mmHg) if diabetes or renal disease co-exists. Such targets cannot usually be reached using monotherapies. This is especially true in patients who present with a high cardiovascular risk. The co-administration of two agents acting by different mechanisms considerably increases the blood pressure control rate. Such combinations are not only efficacious, but are also well tolerated, and some fixed low-dose combinations even have a placebo-like tolerability. This is the case for the preparation containing the angiotensin-converting enzyme inhibitor perindopril (2 mg) and the diuretic indapamide (0.625 mg), a fixed low-dose combination that has been shown in controlled trials to be more effective than monotherapies in reducing albuminuria, regressing cardiac hypertrophy and improving the stiffness of large arteries. Using this combination to initiate antihypertensive therapy has been shown in a double-blind trial (Strategies of Treatment in Hypertension: Evaluation; STRATHE) to normalize blood pressure (< 140/90 mmHg) in significantly more patients (62%) than a sequential monotherapy approach based on atenolol, losartan and amlodipine (49%) and a stepped-care strategy based on valsartan and hydrochlorothiazide (47%), with no difference between the three arm groups in terms of tolerability. An ongoing randomized trial (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; ADVANCE) is a study with a 2 x 2 factorial design assessing the effects of the fixed-dose perindopril-indapamide combination and of the intensive gliclazide modified release-based glucose control regimen in type 2 diabetic patients, with or without hypertension. A total of 11 140 patients were randomly selected. Within the first 6 weeks of treatment (run-in phase), the perindopril-indapamide combination lowered blood pressure from 145/81 +/- 22/11 mmHg (mean +/- SD) to 137/78 +/- 20/10 mmHg. Fixed-dose combinations are becoming more and more popular for the management of hypertension, and are even proposed by hypertension guidelines as a first-line option to treat hypertensive patients.
Resumo:
BACKGROUND: Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve haemodynamics in some patients with congestive heart failure. It is now possible to chronically antagonize angiotensin II at its receptor using non-peptide angiotensin II inhibitors such as losartan (DuP 753/MK-954) or TCV 116. EFFECT OF NON-PEPTIDE ANGIOTENSIN II ANTAGONISTS: When administered by mouth, DuP 753 and TCV 116 induce dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the corresponding active metabolites E3174 and CV11974. Preliminary studies performed in hypertensive patients suggest that losartan lowers blood pressure to an equivalent extent to an angiotensin converting enzyme (ACE) inhibitor. CONCLUSIONS: Further investigation is required to show whether these new angiotensin II antagonists compounds compare favourably with ACE inhibitors.