281 resultados para LIVER REGENERATION

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collectively, research aimed to understand the regeneration of certain tissues has unveiled the existence of common key regulators. Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed a misregulation of growth factor signaling, in particular that of transforming growth factor ß-1 (TGF-ßl), which led to alterations of skin wound healing and the growth of its appendages, suggesting it may be a general regulator of regenerative processes. We sought to investigate this further by determining whether NFI-C played a role in liver regeneration. Liver regeneration following two-thirds removal of the liver by partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes following injury lead to a rapid, phased proliferation. However, mechanisms controlling the action of liver proliferative factors such as transforming growth factor-ßl (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) remain largely unknown. We show that the absence of NFI-C impaired hepatocyte proliferation due to an overexpression of PAI-1 and the subsequent suppression of urokinase plasminogen (uPA) activity and hepatocyte growth factor (HGF) signaling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wildtype mice. The subsequent transient down regulation of NFI-C, as can be explained by a self- regulatory feedback loop with TGF-ßl, may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. Overall, we conclude that NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration. Taken together with NFI-C's actions in other in vivo models of (re)generation, it is plausible that NFI-C may be a general regulator of regenerative processes. - L'ensemble des recherches visant à comprendre la régénération de certains tissus a permis de mettre en évidence l'existence de régulateurs-clés communs. L'étude des souris, dépourvues du gène codant pour le facteur de transcription NFI-C (Nuclear Factor I-C), a montré des dérèglements dans la signalisation de certains facteurs croissance, en particulier du TGF-ßl (transforming growth factor-ßl), ce qui conduit à des altérations de la cicatrisation de la peau et de la croissance des poils et des dents chez ces souris, suggérant que NFI-C pourrait être un régulateur général du processus de régénération. Nous avons cherché à approfondir cette question en déterminant si NFI-C joue un rôle dans la régénération du foie. La régénération du foie, induite par une hépatectomie partielle correspondant à l'ablation des deux-tiers du foie, constitue un modèle de régénération bien établi dans lequel la lésion induite conduit à la prolifération rapide des hépatocytes de façon synchronisée. Cependant, les mécanismes contrôlant l'action de facteurs de prolifération du foie, comme le facteur de croissance TGF-ßl et l'inhibiteur de l'activateur du plasminogène PAI-1 (plasminogen activator inhibitor-1), restent encore très méconnus. Nous avons pu montrer que l'absence de NFI-C affecte la prolifération des hépatocytes, occasionnée par la surexpression de PAI-1 et par la subséquente suppression de l'activité de la protéine uPA (urokinase plasminogen) et de la signalisation du facteur de croissance des hépatocytes HGF (hepatocyte growth factor), un mitogène puissant des hépatocytes. Cela indique que NFI-C agit en premier lieu pour promouvoir la prolifération des hépatocytes au début de la régénération du foie chez les souris de type sauvage. La subséquente baisse transitoire de NFI-C, pouvant s'expliquer par une boucle rétroactive d'autorégulation avec le facteur TGF-ßl, pourrait limiter le nombre d'hépatocytes qui entrent dans la première vague de division cellulaire et/ou inhiber l'initiation de la mitose tardive. L'ensemble de ces résultats nous a permis de conclure que NFI-C agit comme un régulateur de la prolifération des hépatocytes synchrones au cours de la régénération du foie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed abnormal skin wound healing and growth of its appendages, suggesting a role in controlling cell proliferation in adult regenerative processes. Liver regeneration following partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes lead to their rapid and phased proliferation. Although NFI-C is highly expressed in the liver, no hepatic function was yet established for this transcription factor. This study aimed to determine whether NFI-C may play a role in hepatocyte proliferation and liver regeneration. METHODS: Liver regeneration and cell proliferation pathways following two-thirds PH were investigated in NFI-C knockout (ko) and wild-type (wt) mice. RESULTS: We show that the absence of NFI-C impaired hepatocyte proliferation because of plasminogen activator I (PAI-1) overexpression and the subsequent suppression of urokinase plasminogen activator (uPA) activity and hepatocyte growth factor (HGF) signalling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wt mice. The subsequent transient down regulation of NFI-C, as can be explained by a self-regulatory feedback loop with transforming growth factor beta 1 (TGF-ß1), may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. CONCLUSION: NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AIMS: Marked changes in metabolism, including liver steatosis and hypoglycemia, occur after partial hepatectomy. Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a nuclear hormone receptor that is activated by fatty acids and involved in hepatic fatty acid metabolism and regeneration. Liver fatty acid binding protein (LFABP) is an abundant protein in liver cytosol whose expression is regulated by PPAR alpha. It is involved in fatty acid uptake and diffusion and in PPAR alpha signaling. The aim of this study was to investigate the expression of PPAR alpha and LFABP during liver regeneration. METHODS: Male Sprague-Dawley rats and male C57 Bl/6 mice were subjected to 2/3 hepatectomy and LFABP and PPAR alpha mRNA and protein levels were measured at different time points after surgery. The effect of partial hepatectomy was followed during 48 h in rats and 72 h in mice. RESULTS: PPAR alpha mRNA and protein levels were decreased 26 h after hepatectomy of rats. The LFABP mRNA and protein levels paralleled those of PPAR alpha and were also decreased 26 h after hepatectomy. In mice, the mRNA level was decreased after 36 and 72 h after hepatectomy. In this case, LFABP mRNA levels decreased more slowly after partial hepatectomy than in rats. CONCLUSIONS: A marked decrease in PPAR alpha expression may be important for changed gene expression, e.g. LFABP, and metabolic changes, such as hypoglycemia, during liver regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Summary The transcription factor and proto-oncogene c-myc plays an important role in integrating many mitogenic signals within the cell. The consequences are both broad and varied and include the regulation of apoptosis, cellular differentiation, cellular growth and cell cycle progression. It is found to be mis-regulated in over 70% of all cancers, however, our knowledge about c-Myc remains limited and very little is known about its physiological role in mammalian development and in adulthood. We have addressed the physiological role of c-Myc in both the bone marrow and the liver of mice by generating adult c-myc flox/flox mice that lacked c-myc in either the bone marrow or the liver after conversion of the c-myc flox alleles into null alleles by the inducible Mx¬Cre transgene with polyI-polyC. In investigating the role of c-Myc in the haematopoietic system, we concentrated on the aspects of cellular proliferation, cellular differentiation and apoptosis. Mice lacking c-Myc develop anaemia between 3-8 weeks and all more differentiated cell types are severely depleted leading to death. However in addition to its role in driving proliferation in transient amplifying cells, we unexpectedly discovered a new role for c-Myc in controlling haematopoietic stem cell (HSC) differentiation. c-Myc deficient HSCs are able to proliferate normally in vivo. In addition, their differentiation into more committed progenitors is blocked. These cells expressed increased adhesion molecules, which possibly prevent HSCs from being released from the special stem cell supporting stromal niche cells with which they closely associate. Secondly we used the liver as a model system to address the role of c-Myc in cellular growth, meaning the increase in cell size, and also cellular proliferation. Our results revealed c-Myc to play no role in metabolic cellular growth following a period of fasting. Following treatment with the xenobiotic TCPOBOP, c-Myc deficient hepatocytes increased in cell size as control hepatocytes and could surprisingly proliferate albeit at a reduced rate demonstrating a c-Myc independent proliferation pathway to exist in parenchymal cells. However, following partial hepatectomy, in which two-thirds of the liver was removed, mutant livers were severely restricted in their regeneration capacity compared to control livers demonstrating that c-Myc is essential for liver regeneration. Résumé Le facteur de transcription et proto-oncogène c-myc joue un rôle important dans l'intégration de nombreux signaux mitogéniques dans la cellule. Les conséquences de son activation sont étendues et variées et incluent la régulation de l'apoptose, de la différenciation, de la croissance et de la progression du cycle cellulaire. Même si plus de 20% des cancers montrent une dérégulation de c-myc, les connaissances sur ce facteur de transcription restent limitées et ses rôles physiologiques au cours du développement et chez l'adulte sont très peu connus. Nous avons étudié le rôle physiologique de c-Myc dans la molle osseuse et le foie murin en générant des souris adultes c-myc flox/flox. Dans ces souris, les allèles c-myc flox sont convertis en allèles nuls par le transgène Mx-Cre après induction avec du Poly-I.C. Pour notre étude du rôle de c-Myc dans le système hématopoiétique, nous nous sommes concentrés sur les aspects de la prolifération et de la différenciation cellulaire, ainsi que sur l'apoptose. Les souris déficientes pour c-Myc développent une anémie 3 à 8 semaines après la délétion du gène; tous les différents types cellulaires matures sont progressivement épuisés ce qui entraîne la mort des animaux. Néanmoins, outre sa capacité à induire la prolifération des cellules transitoires de la molle osseuse, nous avons inopinément découvert un nouveau rôle pour c-Myc dans le contrôle de la différenciation des cellules souches hématopoiétiques (HSC). Les HSC déficientes pour c-Myc prolifèrent normalement in vivo mais leur différenciation en progéniteurs plus engagés dans une voie de différenciation est bloquée. Ces cellules surexpriment certaines molécules d'adhésion ce qui empêcherait les HSC d'être relachées du stroma spécialisé, ou niche, auquel elles sont étroitement associées. D'autre part, nous avons utilisé le foie comme système modèle pour étudier le rôle de c-Myc dans la prolifération et dans la croissance cellulaire, c'est à dire l'augmentation de taille des cellules. Nos résultats ont révélé que c-Myc ne joue pas de rôle dans le métabolisme cellulaire qui suit une période de jeûne. L'augmentation de la taille cellulaire des hépatocytes déficients pour c-Myc suite au traitement avec l'agent xénobiotique TCPOBOP est identique à celle observée pour les cellules de contrôle. Le taux de prolifération des hépatocytes mutants est par contre réduit, indiquant qu'une voie de différenciation indépendante de c-Myc existe dans les cellules parenchymales. Néanmoins, après hépatectomie partielle, où deux-tiers du foie sont éliminés chirurgicalement, les foies mutants sont sévèrement limités dans leur capacité de régénération par rapport aux foies de contrôle, montrant ainsi que c-Myc est essentiel pour la régénération hépatique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To describe the safety, complications, and liver regeneration associated with the left liver after embolization of the right portal vein (PV) in patients with hepatocellular carcinoma (HCC) developed in the setting of advanced liver fibrosis and cirrhosis. MATERIALS AND METHODS: Forty patients (31 men, nine women; mean age, 62 years) with HCC underwent PV embolization over a 4-year period. Embolization was performed from a left PV percutaneous access with use of n-butyl cyanoacrylate (NBCA) mixed with iodized oil. Computed tomography (CT) volumetry was performed before and 1 month after PV embolization to measure the left lobe volume as well as the functional liver ratio defined by the ratio between the left lobe and the total liver volume minus tumoral volume. PV pressure and liver enzyme levels were compared before and 1 month after the procedure and complications were registered. Factors potentially affecting regeneration (age, sex, diabetes, chemoembolization, functional liver ratio before PV embolization, and Knodell histologic score) were evaluated by one-way and stepwise regression analysis. RESULTS: PV embolization could be achieved successfully in all cases. Two patients had partial PV thrombosis on the 1-month follow-up CT and two patients developed transient ascites after PV embolization. The left lobe volume increase was 41% +/- 32% after PV embolization and the functional liver ratio increased from 28% +/- 10% to 36% +/- 10% (P < .0001). Hypertrophy of the left lobe was greater in patients with a low functional liver ratio before PV embolization and those with an F3 fibrosis score. Other factors had no influence on left lobe regeneration. CONCLUSION: PV embolization with use of NBCA is feasible in patients with advanced fibrosis and cirrhosis. Hypertrophy of the left lobe of the liver after PV embolization has a statistically significant correlation with lower functional liver ratio and lower degrees of fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is a protein cross-linking enzyme known to be expressed by hepatocytes and to be induced during the in vivo hepatic apoptosis program. TG2 is also a G protein that mediates intracellular signaling by the alpha-1b-adrenergic receptor (AR) in liver cells. Fas/Fas ligand interaction plays a crucial role in various liver diseases, and administration of agonistic anti-Fas antibodies to mice causes both disseminated endothelial cell apoptosis and fulminant hepatic failure. Here we report that an intraperitoneal dose of anti-Fas antibodies, which is sublethal for wild-type mice, kills all the TG2 knock-out mice within 20 hours. Although TG2-/- thymocytes exposed to anti-Fas antibodies die at the same rate as wild-type mice, TG2-/- hepatocytes show increased sensitivity toward anti-Fas treatment both in vivo and in vitro, with no change in their cell surface expression of Fas, levels of FLIP(L) (FLICE-inhibitory protein), or the rate of I-kappaBalpha degradation, but a decrease in the Bcl-xL expression. We provide evidence that this is the consequence of the impaired AR signaling that normally regulates the levels of Bcl-xL in the liver. In conclusion, our data suggest the involvement of adrenergic signaling pathways in the hepatic regeneration program, in which Fas ligand-induced hepatocyte proliferation with a simultaneous inhibition of the Fas-death pathway plays a determinant role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early in female mammalian embryonic development, cells randomly inactivate one of the two X chromosomes to achieve overall equal inactivation of parental X-linked alleles. Hcfc1 is a highly conserved X-linked mouse gene that encodes HCF-1 - a transcriptional co-regulator implicated in cell proliferation in tissue culture cells. By generating a Cre-recombinase inducible Hcfc1 knock-out (Hcfc1(lox)) allele in mice, we have probed the role of HCF-1 in actively proliferating embryonic cells and in cell-cycle re-entry of resting differentiated adult cells using a liver regeneration model. HCF-1 function is required for both extraembryonic and embryonic development. In heterozygous Hcfc1(lox/+) female embryos, however, embryonic epiblast-specific Cre-induced Hcfc1 deletion (creating an Hcfc1(epiKO) allele) around E5.5 is well tolerated; it leads to a mixture of HCF-1-positive and -negative epiblast cells owing to random X-chromosome inactivation of the wild-type or Hcfc1(epiKO) mutant allele. At E6.5 and E7.5, both HCF-1-positive and -negative epiblast cells proliferate, but gradually by E8.5, HCF-1-negative cells disappear owing to cell-cycle exit and apoptosis. Although generating a temporary developmental retardation, the loss of HCF-1-negative cells is tolerated, leading to viable heterozygous offspring with 100% skewed inactivation of the X-linked Hcfc1(epiKO) allele. In resting adult liver cells, the requirement for HCF-1 in cell proliferation was more evident as hepatocytes lacking HCF-1 fail to re-enter the cell cycle and thus to proliferate during liver regeneration. The survival of the heterozygous Hcfc1(epiKO/+) female embryos, even with half the cells genetically compromised, illustrates the developmental plasticity of the post-implantation mouse embryo - in this instance, permitting survival of females heterozygous for an X-linked embryonic lethal allele.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-kappaB activation and the expression of pro-survival, pro-proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro-inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14-deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell-driven skeletal muscle regeneration, Fn14-deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild-type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of undernutrition was prospectively studied in 143 patients before liver transplantation between 1997 and 2005. Nutritional assessment is a particularly tricky problem in cirrhosis and mid-arm muscle circumference is considered as the best reliable anthropometric tool. In this prospective study, prevalence rate is very high (61%) and undernutrition is more frequent in alcoholic cirrhotic patients. In conclusion, these patients should benefit from an early dietician intervention before liver transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Therapy of chronic hepatitis C (CHC) with pegIFNa/ribavirin achieves sustained virologic response (SVR) in ~55%. Pre-activation of the endogenous interferon system in the liver is associated non-response (NR). Recently, genome-wide association studies described associations of allelic variants near the IL28B (IFNλ3) gene with treatment response and with spontaneous clearance of the virus. We investigated if the IL28B genotype determines the constitutive expression of IFN stimulated genes (ISGs) in the liver of patients with CHC. Methods: We genotyped 93 patients with CHC for 3 IL28B single nucleotide polymorphisms (SNPs, rs12979860, rs8099917, rs12980275), extracted RNA from their liver biopsies and quantified the expression of IL28B and of 8 previously identified classifier genes which discriminate between SVR and NR (IFI44L, RSAD2, ISG15, IFI22, LAMP3, OAS3, LGALS3BP and HTATIP2). Decision tree ensembles in the form of a random forest classifier were used to calculate the relative predictive power of these different variables in a multivariate analysis. Results: The minor IL28B allele (bad risk for treatment response) was significantly associated with increased expression of ISGs, and, unexpectedly, with decreased expression of IL28B. Stratification of the patients into SVR and NR revealed that ISG expression was conditionally independent from the IL28B genotype, i.e. there was an increased expression of ISGs in NR compared to SVR irrespective of the IL28B genotype. The random forest feature score (RFFS) identified IFI27 (RFFS = 2.93), RSAD2 (1.88) and HTATIP2 (1.50) expression and the HCV genotype (1.62) as the strongest predictors of treatment response. ROC curves of the IL28B SNPs showed an AUC of 0.66 with an error rate (ERR) of 0.38. A classifier with the 3 best classifying genes showed an excellent test performance with an AUC of 0.94 and ERR of 0.15. The addition of IL28B genotype information did not improve the predictive power of the 3-gene classifier. Conclusions: IL28B genotype and hepatic ISG expression are conditionally independent predictors of treatment response in CHC. There is no direct link between altered IFNλ3 expression and pre-activation of the endogenous system in the liver. Hepatic ISG expression is by far the better predictor for treatment response than IL28B genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the variability of the response to exogenous atrial natriuretic peptide (ANP), it was infused at the rate of 1 microgram/min for 2 h in 6 salt-loaded normal volunteers under controlled conditions on 2 occasions at an interval of 1 week. The effect on solute excretion and the haemodynamic and endocrine actions were highly reproducible. The constant ANP infusion caused a delayed and prolonged excretion of sodium, chloride and calcium, no change in potassium or phosphate excretion or in glomerular filtration rate but a marked decrease in renal plasma flow. Blood pressure, heart rate and the plasma levels of angiotensin II, aldosterone, arginine vasopressin and plasma renin activity were unaltered. The effect of a 2-h infusion of ANP 0.5 microgram/min or its vehicle on apparent hepatic blood flow (HBF) was also studied in 14 normal volunteers by measuring the indocyanine green clearance. A 21% decrease in HBF was observed in subjects who received the ANP infusion (p less than 0.01 vs vehicle). Thus, ANP infused at a dose that did not lower blood pressure decreased both renal and liver blood flow in normotensive volunteers. The renal and endocrine responses to ANP were reproducible over a 1-week interval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Expression of IL-7R discriminates alloreactive CD4 T cells (Foxp3 negative), from IL-7Rlow regulatory CD4 T cells (Foxp3 positive). Chronic hepatitis C virus infection (HCV) reduces expression of IL-7R on T cells thus promoting persistence of infection. The aim of this study was to analyze the effect of HCV infection on the expression of IL-7R of activated CD4+ T cells in liver transplant patients. Patients and methods: We analyzed PBMC from liver transplant recipients for the expression of CD4, CD25, FoxP3, IL-7R (24 HCV negative and 29 HCV-chronically infected). We compared these data with non-transplanted individuals (52 HCV-chronically infected patients and 38 healthy donors). Results: In HCV-infected liver transplant recipients, levels of CD4+CD25+CD45RO+IL-7R+ T cells were significantly reduced (10.5+/-0.9%) when compared to non-HCV-infected liver transplant recipients (17.6+/-1.4%) (P<0.001), while both groups (HCV-infected and negative transplant recipients) had significantly higher levels than healthy individuals (6.6+/-0.9%) (P<0.0001). After successful antiviral therapy (sustained antiviral response), 6 HCV-infected transplant recipients showed an increase of CD4+CD25+CD45RO+IL-7R+ T cells, reaching levels similar to that of non-HCVinfected recipients (10.73+/-2.63% prior therapy versus 21.7+/-6.3% after clearance of HCV). (P<0.05) In 4 non-responders (i.e. HCVRNA remaining present in serum), levels of CD4+CD25+CD45RO+IL-7R+ T cells remained unmodified during and after antiviral treatment (11.8+/- 3.3% versus 11.3+/-3.3% respectively). Conclusions: Overall, these data indicate that CD4+CD25+CD45RO+IL-7R+ T cells appear to be modulated by chronic HCV infection after liver transplantation. Whether lower levels of alloreactive T cells in HCV-infected liver transplant recipients are associated with a tolerogenic profile remains to be studied.