19 resultados para LIPID CLASS COMPOSITION
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND & AIMS: Although the physiological effects of n-3 polyunsaturated fatty acids (n-3PUFA) are generally thought to require several weeks of exposure to allow their incorporation into plasma membranes, intravenous (IV) n-3PUFA attenuate the cardiovascular and neuroendocrine response to stress within 3 h. Whether oral n-3 PUFA exert similar early effects remains unknown. OBJECTIVE: To assess whether acute IV or short term oral n-3PUFA administration reproduces the metabolic effects of long term oral supplements during exercise, and how it relates to their incorporation into platelets and red blood cells (RBC) membranes. DESIGN: Prospective single center open label study in 8 healthy subjects receiving a 3-h infusion of 0.6 g/kg body weight n-3PUFA emulsion, followed one week later by an oral administration of 0.6 g/kg over 3 consecutive days. Maximal power output (cycling exercise), maximal heart rate (HR), blood lactate at exhaustion, and platelet function were measured at baseline and after IV or 3-day oral supplementation; platelet and RBC membrane composition were assessed until 15 days after n-3PUFA administration. RESULTS: Both IV and oral n-3PUFA significantly decreased maximal HR (-6% and -5%), maximal power output (-10%) and peak blood lactate (-47% and -52%) Platelet function tests were unchanged. The EPA and DHA membrane contents of RBC and platelets increased significantly, but only to 1.7-1.9% of fatty acid content. CONCLUSION: The cardiovascular and metabolic effects of n-3 PUFA during exercise occur already within 1-3 days of exposure, and may be unrelated to changes in membranes composition. Effects occur within hours of administration and are unrelated to lipid membrane composition. Trial registered at clinicaltrials.gov as NCT00516178.
Resumo:
The highly amiloride-sensitive epithelial sodium channel ENaC is well known to be involved in controlling whole body sodium homeostasis and lung liquid clearance. ENaC expression has also been detected in the skin of amphibians and mammals. Mice lacking ENaC expression lose rapidly weight associated with an epidermal barrier defect that develops following birth. This dehydration is accompanied with a highly abnormal lipid matrix composition and an impaired skin surface acidification. This strongly suggests a role of ENaC in the maturation of barrier function rather than in the prenatal generation of the barrier, and may be as such an important modulator for skin hydration. In parallel, gene targeting experiments of regulators of ENaC activity, membrane serine proteases, also termed channel activating proteases, like CAP1/Prss8 and matriptase/MT-SP1 by themselves have been shown to be crucial for the epidermal barrier function. In our review, we mainly focus on the role of ENaC and its regulators in the skin and discuss their importance in the epidermal permeability barrier function.
Resumo:
Lipids available in fingermark residue represent important targets for enhancement and dating techniques. While it is well known that lipid composition varies among fingermarks of the same donor (intra-variability) and between fingermarks of different donors (inter-variability), the extent of this variability remains uncharacterised. Thus, this worked aimed at studying qualitatively and quantitatively the initial lipid composition of fingermark residue of 25 different donors. Among the 104 detected lipids, 43 were reported for the first time in the literature. Furthermore, palmitic acid, squalene, cholesterol, myristyl myristate and myristyl myristoleate were quantified and their correlation within fingermark residue was highlighted. Ten compounds were then selected and further studied as potential targets for dating or enhancement techniques. It was shown that their relative standard deviation was significantly lower for the intra-variability than for the inter-variability. Moreover, the use of data pretreatments could significantly reduce this variability. Based on these observations, an objective donor classification model was proposed. Hierarchical cluster analysis was conducted on the pre-treated data and the fingermarks of the 25 donors were classified into two main groups, corresponding to "poor" and "rich" lipid donors. The robustness of this classification was tested using fingermark replicates of selected donors. 86% of these replicates were correctly classified, showing the potential of such a donor classification model for research purposes in order to select representative donors based on compounds of interest.
Resumo:
Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patensdemonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.
Resumo:
The lipid and fatty acid composition of rat brain was studied during its development both in vivo and in an aggregating cell culture system. Although the amount of lipid present in the cultures was very low, the increase in glycolipid content corresponded closely to the period of intense myelin formation. Very long chain fatty acids (hydroxylated and unsubstituted) were present in 41-day cultures. In comparison to the in vivo situation, myelination was delayed in vitro and, after 40 days in culture, cholesterol esters were 5-fold higher than in vivo, indicating that demyelination was occurring.
Resumo:
Background: Leptin is produced primarily by adipocytes. Although originally associated with the central regulation of satiety and energy metabolism, increasing evidence indicates that leptin may be an important factor for congestive heart faire (CHF). In the study, we aimed to test the hypothesis that leptin may influence CHF pathophysiology via a pathway of increasing body mass index (BMI). Methods: We studied 2,389 elderly participants aged 70 and older (M; 1161, F: 1228) without CHF and with serum leptin measures at the Health Aging, and Body Composition study. We analyzed the association between serum leptin level and risk of incident CHF using Cox hazard proportional regression models. Elevated leptin level was defined as more than the highest quartile (Q4) of leptin distribution in the total sample for each gender. Adjusted-covariates included demographic, behavior, lipid and inflammation variables (partially-adjusted models), and further included BMI (fully-adjusted models). Results: In a mean 9-year follow-up, 316 participants (13.2%) developed CHF. The partially-adjusted models indicated that men and women with elevated serum leptin levels (>=9.89 ng/ml in men and >=25 ng/ml in women) had significantly higher risks of developing CHF than those with leptin level of less than Q4. The adjusted hazard ratios (95%CI) for incident CHF was 1.49 (1.04 -2.13) in men and 1.71 (1.12 -2.58) in women. However, these associations became non-significant after adjustment for including BMI for each gender. The fully-adjusted hazard ratios (95%CI) were 1.43 (0.94 -2.18) in men and 1.24 (0.77-1.99) in women. Conclusion: Subjects with elevated leptin levels have a higher risk of CHF. The study supports the hypothesis that the influence of leptin level on risk of CHF may be through a pathway related to increasing BMI.
Resumo:
Lipopolysaccharides (LPS, endotoxins) are main constituents of the outer membranes of Gram-negative bacteria, with the 'endotoxic principle' lipid A anchoring LPS into the membrane. When LPS is removed from the bacteria by the action of the immune system or simply by cell dividing, it may interact strongly with immunocompetent cells such as mononuclear cells. This interaction may lead, depending on the LPS concentration, to beneficial (at low) or pathophysiological (at high concentrations) reactions, the latter frequently causing the septic shock syndrome. There is a variety of endogenous LPS-binding proteins. To this class belong lactoferrin (LF) and hemoglobin (Hb), which have been shown to suppress and enhance the LPS-induced cytokine secretion in mononuclear cells, respectively. To elucidate the interaction mechanisms of endotoxins with these proteins, we have investigated in an infrared reflection-absorption spectroscopy (IRRAS) study the interaction of LPS or lipid A monolayers at the air/water interface with LF and Hb proteins, injected into the aqueous subphase. The data are clearly indicative of completely different interaction mechanisms of the endotoxins with the proteins, with the LF acting only at the LPS backbone, whereas Hb incorporates into the lipid monolayer. These data allow an understanding of the different reactivities in the biomedicinal systems.
Resumo:
OBJECTIVE: To determine the influence of body weight, fat mass, and fat distribution on resting endogenous glucose production in healthy lean and overweight individuals. DESIGN: measurements were performed in the resting postabsorptive state in individuals receiving an unrestricted diet. SETTING: Institute of Physiology of Lausanne University. MEASUREMENTS: resting post absorptive glucose production, glycogenolysis and gluconeogenesis; resting energy expenditure and net substrate oxidation. RESULTS: Endogenous glucose production was positively correlated with body weight, lean body mass, energy expenditure and carbohydrate oxidation. Gluconeogenesis was positively correlated with net lipid oxidation and energy expenditure, and negatively correlated with net carbohydrate oxidation. No correlation with body fat or fat distribution was observed. CONCLUSIONS: Gluconeogenesis shows a large interindividual variability. Net lipid oxidation and not body fat appears to be a major determinant of gluconeogenesis.
Resumo:
To provide further insights into ruminant lipid digestion and metabolism, and into cis9, trans-11 18:2 synthesis, 12 growing Engadine lambs grazing either mountain pasture (2,250 m above sea level; n = 6) or lowland pasture (400 m above sea level; n = 6) were studied. Both pastures consisted exclusively of C-3 plants. Before the experiment, all animals grazed a common pasture for 6 wk. Grasses and perirenal adipose tissues of the sheep were analyzed for fatty acids by gas chromatography. Stable C-isotope ratios (delta C-13 values in % vs. the Vienna Pee Dee Belemnite standard) were determined in the composite samples by elemental analysis-isotope ratio mass spectrometry. The delta C-13 of the individual fatty acids were measured by gas chromatography-combustion-isotope ratio mass spectrometry. The delta C-13 value of the entire mountain pasture grass was -27.5% (SD 0.31), whereas that of the lowland pasture grass was -30.0% (SD 0.07). This difference was reflected in the perirenal adipose tissues of the corresponding sheep (P < 0.05), even though the delta C-13 values were less in the animals than in the grass. The delta C-13 values for cis-9 16:1 and cis-9 18:1 in perirenal fat differed between mountain and lowland lambs (P < 0.05). The 16:0 in the adipose tissue was enriched in C-13 by 5% compared with the dietary 16:0, likely as a result of partly endogenous synthesis. The d13C values of cis-9, trans-11 18:2 (cis-9, trans-11 CLA) in the adipose tissue were smaller than those of its dietary precursors, cis-9, cis-12 18:2 and cis-9, cis-12, cis-15 18:3; conversely, the delta C-13 values of trans-11 18:1 were not, suggesting that large proportions of perirenal cis-9, trans-11 18:2 were of endogenous origin and discrimination against C-13 occurred during Delta(9)-desaturation. The same discrimination was indicated by the isotopic shift between 16:0 and cis-9 16:1 in the mountain grazing group. Furthermore, the delta C-13 values of cis-9, trans-11 18:2 were smaller relative to the precursor fatty acids in the mountain lambs compared with the lowland group. This result suggests a reduced extent of biohydrogenation in lambs grazing on mountain grass in comparison with those grazing on lowland grass. This was supported by the smaller cis-9, trans-11 18:2 concentrations in total fatty acids found in the adipose tissues of the lowland lambs (P < 0.001). The results of this study demonstrate that natural differences between delta C-13 values of swards from different pastures and the adipose tissue fatty acids could be used as tracers in studies of lipid metabolism in ruminants.
Resumo:
Gene duplication and neofunctionalization are known to be important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family crucial to the vertebrate immune system. In birds, two MHC class II β (MHCIIβ) exon 3 lineages have been recently characterized, and two hypotheses for the evolutionary history of MHCIIβ lineages were proposed. These lineages could have arisen either by 1) an ancient duplication and subsequent divergence of one paralog or by 2) recent parallel duplications followed by functional convergence. Here, we compiled a data set consisting of 63 MHCIIβ exon 3 sequences from six avian orders to distinguish between these hypotheses and to understand the role of selection in the divergent evolution of the two avian MHCIIβ lineages. Based on phylogenetic reconstructions and simulations, we show that a unique duplication event preceding the major avian radiations gave rise to two ancestral MHCIIβ lineages that were each likely lost once later during avian evolution. Maximum likelihood estimation shows that following the ancestral duplication, positive selection drove a radical shift from basic to acidic amino acid composition of a protein domain facing the α-chain in the MHCII α β-heterodimer. Structural analyses of the MHCII α β-heterodimer highlight that three of these residues are potentially involved in direct interactions with the α-chain, suggesting that the shift following duplication may have been accompanied by coevolution of the interacting α- and β-chains. These results provide new insights into the long-term evolutionary relationships among avian MHC genes and open interesting perspectives for comparative and population genomic studies of avian MHC evolution.
Resumo:
Aims: The adaptive immune response against hepatitis C virus (HCV) is significantly shaped by the host's composition of HLA alleles. Thus, the HLA phenotype is a critical determinant of viral evolution during adaptive immune pressure. Potential associations of HLA class I alleles with polymorphisms of HCV immune escape variants are largely unknown. Methods: Direct sequence analysis of the genes encoding the HCV proteins E2, NS3 and NS5B in a cohort of 159 patients with chronic HCV genotype 1 infection who were treated with pegylated interferon-alfa 2b and ribavirin in a prospective controlled trial for 48 weeks was exhibited. HLA class I genotyping was performed by strand-specific reverse hybridization with the INNO-LiPA line probe assays for HLA-A and HLA-B and by strand-specific PCR-SSP. We analyzed each amino acid position of HCV proteins using an extension of Fisher's exact test for associations with HLA alleles. In addition, associations of specific HLA alleles with inflammatory activity, liver fibrosis, HCV RNA viral load and virologic treatment outcome were investigated. Results: Separate analyses of HCV subtype 1a and 1b isolates revealed substantially different patterns of HLA-restricted polymorphisms between subtypes. Only one polymorphism within NS5B (V2758x) was significantly associated with HLA B*15 in HCV genotype 1b infected patients (adjusted p=0,048). However, a number of HLA class I-restricted polymorphisms within novel putative HCV CD8+ T cell epitopes (genotype 1a: HLA-A*11 GTRTIASPK1086-1094 [NS3], HLA-B*07 WPAPQGARSL1111-1120 [NS3]; genotype 1b: HLA-A*24 HYAPRPCGI488-496 [E2], HLA-B*44 GENETDVLL530-538 [E2], HLA-B*15 RVFTEAMTRY2757-2766 [NS5B]) were observed with high predicted epitope binding scores assessed by the web-based software SYFPEITHI (>21). Most of the identified putative epitopes were overlapping with already otherwise published epitopes, indicating a high immunogenicity of the accordant HCV protein region. In addition, certain HLA class I alleles were associated with inflammatory activity, stage of liver fibrosis, and sustained virologic response to antiviral therapy. Conclusions: HLA class I restricted HCV sequence polymorphisms are rare. HCV polymorphisms identified within putative HCV CD8+ T cell epitopes in the present study differ in their genomic distribution between genotype 1a and 1b isolates, implying divergent adaptation to the host's immune pressure on the HCV subtype level.
Resumo:
Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2)) under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are essential in glucose and lipid metabolism and are implicated in metabolic disorders predisposing to atherosclerosis, such as diabetes and dyslipidemia. Conversely, antidiabetic glitazones and hypolipidemic fibrate drugs, known as PPARgamma and PPARalpha ligands, respectively, reduce the process of atherosclerotic lesion formation, which involves chronic immunoinflammatory processes. Major histocompatibility complex class II (MHC-II) molecules, expressed on the surface of specialized cells, are directly involved in the activation of T lymphocytes and in the control of the immune response. Interestingly, expression of MHC-II has recently been observed in atherosclerotic plaques, and it can be induced by the proinflammatory cytokine interferon-gamma (IFN-gamma) in vascular cells. To explore a possible role for PPAR ligands in the regulation of the immune response, we investigated whether PPAR activation affects MHC-II expression in atheroma-associated cells. In the present study, we demonstrate that PPARgamma but not PPARalpha ligands act as inhibitors of IFN-gamma-induced MHC-II expression and thus as repressors of MHC-II-mediated T-cell activation. All different types of PPARgamma ligands tested inhibit MHC-II. This effect of PPARgamma ligands is due to a specific inhibition of promoter IV of CIITA and does not concern constitutive expression of MHC-II. Thus, the beneficial effects of antidiabetic PPARgamma activators on atherosclerotic plaque development may be partly explained by their repression of MHC-II expression and subsequent inhibition of T-lymphocyte activation.
Resumo:
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.