22 resultados para LEPTOSPIRA SPP.
em Université de Lausanne, Switzerland
Resumo:
DNA-based techniques are important tools for species assignment, in particular when identification with morphological criteria is difficult. The aim of this study was to genetically determine the species identity of tree frogs (Hyla spp.) populations from western and northern Switzerland (Swiss Plateau), this area being frequently subjected to introductions of species or sub-species from south of the Alps. We sequenced 261 base pairs of the mitochondrial DNA cytochrome b gene from 24 samples of tree frogs from the Swiss Plateau, Ticino (southern Switzerland) and the Dombes region (Ain, France), and compared them with homologous sequences retrieved from DNA databases. The phylogenetic analyses revealed two distinct clades. The first one is represented by samples of Green tree frog (Hyla arborea) from the Swiss Plateau, France, Germany and Greece, confirming the current knowledge about the species' distribution. The second clade includes samples belonging to the Italian tree frog (Hyla intermedia) from south of the Alps (Ticino and Italy), and unexpectedly from the Grangettes site in western Switzerland. These results suggest the introduction of the Italian tree frog H. intermedia north of the Alps, and raise questions about the management of the Grangettes protected area.
Resumo:
Theory has long predicted allocation patterns for plant defense against herbivory, but only recently have both above- and belowground plant defenses been considered simultaneously. Milkweeds in the genus Asclepias are a classic chemically defended clade of plants with toxic cardenolides (cardiac glycosides) and pressurized latex employed as anti-herbivore weapons. Here we combine a comparative approach to investigate broadscale patterns in allocation to root vs. shoot defenses across species with a species-specific experimental approach to identify the consequences of defense allocational shifts on a specialist herbivore. Our results show phylogenetic conservatism for inducibility of shoot cardenolides by an aboveground herbivore, with only four closely related tropical species showing significant induction; the eight temperate species examined were not inducible. Allocation to root and shoot cardenolides was positively correlated across species, and this relationship was maintained after accounting for phylogenetic nonindependence. In contrast to long-standing theoretical predictions, we found no evidence for a trade-off between constitutive and induced cardenolides; indeed the two were positively correlated across species in both roots and shoots. Finally, specialist root and shoot herbivores of common milkweed (A. syriaca) had opposing effects on latex production, and these effects had consequences for caterpillar growth consistent with latex providing resistance. Although cardenolides were not affected by our treatments, A. syriaca allocated 40% more cardenolides to shoots over roots. We conclude that constitutive and inducible defenses are not trading off across plant species, and shoots of Asclepias are more inducible than roots. Phylogenetic conservatism cannot explain the observed patterns of cardenolide levels across species, but inducibility per se was conserved in a tropical clade. Finally, given that above- and belowground herbivores can systemically alter the defensive phenotype of plants, we concur with recent calls for a whole-plant perspective in testing models of plant defense allocation.
Resumo:
Invasive candidiasis (IC) is a relatively common syndrome in neonates and children and is associated with significant morbidity and mortality. These guidelines provide recommendations for the prevention and treatment of IC in neonates and children. Appropriate agents for the prevention of IC in neonates at high risk include fluconazole (A-I), nystatin (B-II) or lactoferrin ± Lactobacillus (B-II). The treatment of IC in neonates is complicated by the high likelihood of disseminated disease, including the possibility of infection within the central nervous system. Amphotericin B deoxycholate (B-II), liposomal amphotericin B (B-II), amphotericin B lipid complex (ABLC) (C-II), fluconazole (B-II), micafungin (B-II) and caspofungin (C-II) can all be potentially used. Recommendations for the prevention of IC in children are largely extrapolated from studies performed in adults with concomitant pharmacokinetic data and models in children. For allogeneic HSCT recipients, fluconazole (A-I), voriconazole (A-I), micafungin (A-I), itraconazole (B-II) and posaconazole (B-II) can all be used. Similar recommendations are made for the prevention of IC in children in other risk groups. With several exceptions, recommendations for the treatment of IC in children are extrapolated from adult studies, with concomitant pharmacokinetic studies. Amphotericin B deoxycholate (C-I), liposomal amphotericin B (A-I), ABLC (B-II), micafungin (A-I), caspofungin (A-I), anidulafungin (B-II), fluconazole (B-I) and voriconazole (B-I) can all be used.
Resumo:
Some bacteria have the capacity to reduce incidence and severity of plant diseases either by inhibiting the pathogen or by modulating the resistance response of the plant. Plants dispose of different resistance mechanisms that are influenced by the biotic and abiotic environment. The present experiments explored the effects of biocontrol strains of Pseudomonas fluorescens on the resistance of wheat varieties against brown rust disease caused by Puccinia triticina. Root inoculation with biocontrol pseudomonads reduced the disease severity on the leaves. The plant response depended on the genotype of both the microbes and the wheat varieties, suggesting a straight interaction at the molecular level.
Resumo:
Objective: Aspergillus species are the main pathogens causing invasive fungal infections but the prevalence of other mould species is rising. Resistance to antifungals among these new emerging pathogens presents a challenge for managing of infections. Conventional susceptibility testing of non-Aspergillus species is laborious and often difficult to interpret. We evaluated a new method for real-time susceptibility testing of moulds based on their of growth-related heat production.Methods: Laboratory and clinical strains of Mucor spp. (n = 4), Scedoporium spp. (n = 4) and Fusarium spp. (n = 5) were used. Conventional MIC was determined by microbroth dilution. Isothermal microcalorimetry was performed at 37 C using Sabouraud dextrose broth (SDB) inoculated with 104 spores/ml (determined by microscopical enumeration). SDB without antifungals was used for evaluation of growth characteristics. Detection time was defined as heat flow exceeding 10 lW. For susceptibility testing serial dilutions of amphotericin B, voriconazole, posaconazole and caspofungin were used. The minimal heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration, inhbiting 50% of the heat produced by the growth control at 48 h or at 24 h for Mucor spp. Susceptibility tests were performed in duplicate.Results: Tested mould genera had distinctive heat flow profiles with a median detection time (range) of 3.4 h (1.9-4.1 h) for Mucor spp, 11.0 h (7.1-13.7 h) for Fusarium spp and 29.3 h (27.4-33.0 h) for Scedosporium spp. Graph shows heat flow (in duplicate) of one representative strain from each genus (dashed line marks detection limit). Species belonging to the same genus showed similar heat production profiles. Table shows MHIC and MIC ranges for tested moulds and antifungals.Conclusions: Microcalorimetry allowed rapid detection of growth of slow-growing species, such as Fusarium spp. and Scedosporium spp. Moreover, microcalorimetry offers a new approach for antifungal susceptibility testing of moulds, correlating with conventional MIC values. Interpretation of calorimetric susceptibility data is easy and real-time data on the effect of different antifungals on the growth of the moulds is additionally obtained. This method may be used for investigation of different mechanisms of action of antifungals, new substances and drug-drug combinations.
Resumo:
The marsh frog (Pelophylax ridibundus) has been introduced in many places of Central and Western Europe due to commercial trades with Eastern Europe, and is rapidly replacing the native pool frog (P. lessonae). A large number of Pelophylax species are distributed in Eastern Europe and the strong phenotypic similarity between these species is rendering their identification hazardous. Consequently, alien populations of Pelophylax might not strictly be composed of P. ridibundus as previously suspected. In the present study, we analyzed the cytochrome b and NADH dehydrogenase subunit 3 genes of introduced and native Pelophylax from Switzerland (299 individuals), in order to properly identify the source populations of the invaders and the genetic status of the native species. Our study highlighted the occurrence of several genetic lineages of invasive frogs in western Switzerland. Unexpectedly, we also showed that several populations of the native pool frog (P. lessonae) cluster with the Italian pool frog P. bergeri from central Italy (considered by some authors as a subspecies of P. lessonae) Hence, these populations are probably also the result of introductions, meaning that the number of native P. lessonae populations is less important than expected in Switzerland. These findings have important implications concerning the conservation of the endemic pool frog populations, as the presence of multiple alien species could strongly affect their long-term subsistence.
Resumo:
Thirty strains from the 11 species of the genus Leptospira were studied by multilocus enzyme electrophoresis at 12 enzyme loci, all of which were polymorphic. The mean number of alleles per locus was 6.5. Twenty-five electrophoretic types were distinguished. Grouping of the strains by cluster analysis was in general agreement with species delineation as determined by DNA-DNA hybridization, except for the strains of Leptospira meyeri and Leptospira inadai, which were scattered throughout the genus, reflecting previously recognized taxonomic uncertainties. Analysis of the clonality within Leptospira interrogans sensu stricto indicated that this population was relatively heterogeneous and a lack of gene linkage disequilibrium could not be excluded. There was a genetic discrimination between the pathogenic species and the saprophytic ones. The phenotypically intermediate species (L. inadai and Leptospira fainei) were also genetically separated and were probably closer to the saprophytes than to the pathogens.
Resumo:
Background: Fusarium onychomycoses are weakly responsive or unresponsive to standard onychomycosis treatments with oral terbinafine and itraconazole. Objective: To examine whether the use of terbinafine and itraconazole, which are highly effective in fighting Trichophyton onychomycoses, could be a cause of the high incidence of Fusarium nail infections. Methods: Polymerase chain reaction methods were used to detect both Fusarium spp. and Trichophyton spp. in nails of patients who had either received treatment previously or not. Results: No significant microbiological differences were found between treated and untreated patients. In 24 of 79 cases (30%), Fusarium spp. was detected in samples of patients having had no previous antifungal therapy and when Trichophyton spp. grew in culture. Conclusion: Oral terbinafine and itraconazole treatments do not appear to favor the establishment of Fusarium spp. in onychomycosis. © 2014 S. Karger AG, Basel.
Resumo:
The aim of our survey was to assess the effect of irrigation water of the microbiological quality on the production chain of lettuce in the Dakar area. Microbiological analysis showed that 35% of irrigation water was contaminated by Salmonella spp. between the two water-types used for irrigation (groundwater and wastewater), no significant difference (p>0.05) in their degree of contamination was found. The incidence of different types of irrigation water on the contamination rate of lettuces from the farm (Pikine and Patte d'Oie) was not different either (p>0.05). However, the contamination rate of lettuce from markets of Dalifort and Grand-Yoff that were supplied by the area of Patte d'Oie was greater than those of Sham and Zinc supplied by Pikine (p<0.05). Comparison of serotypes of Salmonella isolated from irrigation water and lettuce showed that irrigation water may affect the microbiological quality of lettuce. Manures, frequently used as organic amendment in cultivating lettuce are another potential source of contamination. These results showed that lettuce may constitute effective vectors for the transmission of pathogens to consumers. Extensive treatment of the used wastewater and/or composting of manure could considerably reduce these risks.
Resumo:
Cette étude est la première portant sur la biodiversité écologique des Chalcidiens associés au genre Ficus au Sénégal. Sur les 26 espèces de figuiers signalées au Sénégal, 11 ont été trouvées. Chaque espèce de Ficus possède une microfaune Chalcidienne caractéristique. La comparaison des niveaux d'infestation révèle une différence très significative entre espèces de Ficus (P<0.0001). Les figues de F.sycomorus du domaine Nord-Soudanien sont, en valeurs absolues, plus infestées que celles des domaines Sud-Soudanien et Soudanien Atlantique. Les tests statistiques révèlent une différence d'infestation non significative des figues de F.sycomorus entre les 3 domaines (P>0.05). Cependant, entre le domaine Nord-Soudanien et le domaine Soudanien Atlantique, cette différence est significative (P=0.0091).
Resumo:
Studies of hybrid zones can inform our understanding of reproductive isolation and speciation. Two species of brown lemur (Eulemur rufifrons and E. cinereiceps) form an apparently stable hybrid zone in the Andringitra region of south-eastern Madagascar. The aim of this study was to identify factors that contribute to this stability. We sampled animals at 11 sites along a 90-km transect through the hybrid zone and examined variation in 26 microsatellites, the D-loop region of mitochondrial DNA, six pelage and nine morphological traits; we also included samples collected in more distant allopatric sites. Clines in these traits were noncoincident, and there was no increase in either inbreeding coefficients or linkage disequilibrium at the centre of the zone. These results could suggest that the hybrid zone is maintained by weak selection against hybrids, conforming to either the tension zone or geographical selection-gradient model. However, a closer examination of clines in pelage and microsatellites indicates that these clines are not sigmoid or stepped in shape but instead plateau at their centre. Sites within the hybrid zone also occur in a distinct habitat, characterized by greater seasonality in precipitation and lower seasonality in temperature. Together, these findings suggest that the hybrid zone may follow the bounded superiority model, with exogenous selection favouring hybrids within the transitional zone. These findings are noteworthy, as examples supporting the bounded superiority model are rare and may indicate a process of ecologically driven speciation without geographical isolation.
Resumo:
Current increases in antifungal drug resistance in Candida spp. and clinical treatment failures are of concern, as invasive candidiasis is a significant cause of mortality in intensive care units (ICUs). This trend reflects the large and expanding use of newer broad-spectrum antifungal agents, such as triazoles and echinocandins. In this review, we firstly present an overview of the mechanisms of action of the drugs and of resistance in pathogenic yeasts, subsequently focusing on recent changes in the epidemiology of antifungal resistance in ICU. Then, we emphasize the clinical impacts of these current trends. The emergence of clinical treatment failures due to resistant isolates is described. We also consider the clinical usefulness of recent advances in the interpretation of antifungal susceptibility testing and in molecular detection of the mutations underlying acquired resistance. We pay particular attention to practical issues relating to ICU patient management, taking into account the growing threat of antifungal drug resistance.
Resumo:
We evaluated isothermal microcalorimetry for real-time susceptibility testing of non-Aspergillus molds. MIC and minimal effective concentration (MEC) values of Mucorales (n = 4), Fusarium spp. (n = 4), and Scedosporium spp. (n = 4) were determined by microbroth dilution according to the Clinical Laboratory Standard Institute M38-A2 guidelines. Heat production of molds was measured at 37 °C in Sabouraud dextrose broth inoculated with 2.5 × 10(4) spores/mL in the presence of amphotericin B, voriconazole, posaconazole, caspofungin, and anidulafungin. As determined by microcalorimetry, amphotericin B was the most active agent against Mucorales (MHIC 0.06-0.125 μg/mL) and Fusarium spp. (MHIC 1-4 μg/mL), whereas voriconazole was the most active agent against Scedosporium spp. (MHIC 0.25 to 8 μg/mL). The percentage of agreement (within one 2-fold dilution) between the MHIC and MIC (or MEC) was 67%, 92%, 75%, and 83% for amphotericin B, voriconazole, posaconazole, and caspofungin, respectively. Microcalorimetry provides additional information on timing of antifungal activity, enabling further investigation of drug-mold and drug-drug interaction, and optimization of antifungal treatment.