11 resultados para LC 90
em Université de Lausanne, Switzerland
Resumo:
Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.
Resumo:
The FIT trial was conducted to evaluate the safety and efficacy of 90Y-ibritumomab tiuxetan (0.4 mCi/kg; maximum dose 32 mCi) when used as consolidation of first complete or partial remission in patients with previously untreated, advanced-stage follicular lymphoma (FL). Patients were randomly assigned to either 90Y-ibritumomab treatment (n = 207) or observation (n = 202) within 3 months (mo) of completing initial induction therapy (chemotherapy only: 86%; rituximab in combination with chemotherapy: 14%). Response status prior to randomization did not differ between the groups: 52% complete response (CR)/CR unconfirmed (CRu) to induction therapy and 48% partial response (PR) in the 90Y-ibritumomab arm vs 53% CR/CRu and 44% PR in the control arm. The primary endpoint was progression-free survival (PFS) of the intent-to-treat (ITT) population. Results from the first extended follow-up after a median of 3.5 years revealed a significant improvement in PFS from the time of randomization with 90Y-ibritumomab consolidation compared with control (36.5 vs 13.3 mo, respectively; P < 0.0001; Morschhauser et al. JCO. 2008; 26:5156-5164). Here we report a median follow-up of 66.2 mo (5.5 years). Five-year PFS was 47% in the 90Y-ibritumomab group and 29% in the control group (hazard ratio (HR) = 0.51, 95% CI 0.39-0.65; P < 0.0001). Median PFS in the 90Y-ibritumomab group was 49 mo vs 14 mo in the control group. In patients achieving a CR/CRu after induction, 5-year PFS was 57% in the 90Y-ibritumomab group, and the median had not yet been reached at 92 months, compared with a 43% 5-year PFS in the control group and a median of 31 mo (HR = 0.61, 95% CI 0.42-0.89). For patients in PR after induction, the 5-year PFS was 38% in the 90Y-ibritumomab group with a median PFS of 30 mo vs 14% in the control group with a median PFS of 6 mo (HR = 0.38, 95% CI 0.27-0.53). Patients who had received rituximab as part of induction treatment had a 5-year PFS of 64% in the 90Y-ibritumomab group and 48% in the control group (HR = 0.66, 95% CI 0.30-1.47). For all patients, time to next treatment (as calculated from the date of randomization) differed significantly between both groups; median not reached at 99 mo in the 90Y-ibritumomab group vs 35 mo in the control group (P < 0.0001). The majority of patients received rituximab-containing regimens when treated after progression (63/82 [77%] in the 90Y-ibritumomab group and 102/122 [84%] in the control group). Overall response rate to second-line treatment was 79% in the 90Y-ibritumomab group (57% CR/CRu and 22% PR) vs 78% in the control arm (59% CR/CRu, 19% PR). Five-year overall survival was not significantly different between the groups; 93% and 89% in the 90Y-ibritumomab and control groups, respectively (P = 0.561). To date, 40 patients have died; 18 in the 90Y-ibritumomab group and 22 in the control group. Secondary malignancies were diagnosed in 16 patients in the 90Y-ibritumomab arm vs 9 patients in the control arm (P = 0.19). There were 6 (3%) cases of myelodysplastic syndrome (MDS)/acute myelogenous leukemia (AML) in the 90Y-ibritumomab arm vs 1 MDS in the control arm (P = 0.063). In conclusion, this extended follow-up of the FIT trial confirms the benefit of 90Y-ibritumomab consolidation with a nearly 3 year advantage in median PFS. A significant 5-year PFS improvement was confirmed for patients with a CR/CRu or a PR after induction. Effective rescue treatment with rituximab-containing regimens may explain the observed no difference in overall survival between both patient groups who were - for the greater part - rituximab-naïve.
Resumo:
Mirtazapine is an antidepressant that acts specifically on noradrenergic and sertonergic receptors. A LC-MS method was developed that allows the simultaneous analysis of the R-(-)- and S-(+)-enantiomers of mirtazapine (MIR), demethylmirtazapine (DMIR), and 8-hydroxymirtazapine (8-OH-MIR) in plasma of MIR-treated patients. The method involves a 3-step liquid-liquid extraction, an HPLC separation on a Chirobiotic V column, and MS detection in electrospray mode. The limit of quantification (LOQ) for all enantiomers was 0.5 ng/mL, and the intra- and interday CVs were within 3.3% to 11.7% (concentration ranges 5-50 ng/mL). A method is also presented for the quantitative analysis of glucuroconjugated MIR and 8-OH-MIR. S-(+)-8-OH-MIR is present in plasma mainly as its glucuronide. Preliminary data suggest that in all patients, except in those comedicated with CYP2D6 inhibitors such as fluoxetine and thioridazine, R-(-)-MIR concentrations were higher than those of S-(+)MIR. Moreover, fluvoxamine seems also to inhibit the metabolism of MIR. Therefore, this method seems to be suitable for the stereoselective assay of MIR and its metabolites in plasma of patients comedicated with MIR and other drugs for routine and research purposes.
Resumo:
The new-generation nebulizers are commonly used for the administration of salbutamol in mechanically ventilated patients. The different modes of administration and new devices have not been compared. We developed a liquid chromatography-tandem mass spectrometry method for the determination of concentrations as low as 0.05 ng/mL of salbutamol, corresponding to the desired plasma concentration after inhalation. Salbutamol quantification was performed by reverse-phase HPLC. Analyte quantification was performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection ESI in the positive mode. The method was validated over concentrations ranging from 0.05 to 100 ng/mL in plasma and from 0.18 to 135 ng/mL in urine. The method is precise, with mean inter-day coefficient of variation (CV%) within 3.1-8.3% in plasma and 1.3-3.9% in urine, as well as accurate. The proposed method was found to reach the required sensitivity for the evaluation of different nebulizers as well as nebulization modes. The present assay was applied to examine whether salbutamol urine levels, normalized with the creatinine levels, correlated with the plasma concentrations. A suitable, convenient and noninvasive method of monitoring patients receiving salbutamol by mechanical ventilation could be implemented. Copyright © 2011 John Wiley & Sons, Ltd.