10 resultados para Ku Klux Klan
em Université de Lausanne, Switzerland
Resumo:
Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.
Resumo:
In Saccharomyces cerevisiae, efficient silencer function requires telomere proximity, i.e. compartments of the nucleoplasm enriched in silencing factors. Accordingly, silencers located far from telomeres function inefficiently. We show here that cells lacking yKu balance between two mitotically stable states of silencing competence. In one, a partial delocalization of telomeres and silencing factors throughout the nucleoplasm correlates with enhanced silencing at a non-telomeric locus, while in the other, telomeres retain their focal pattern of distribution and there is no repression at the non-telomeric locus, as observed in wild-type cells. The two states also differ in their level of residual telomeric silencing. These findings indicate the existence of a yKu-independent pathway of telomere clustering and Sir localization. Interestingly, this pathway appears to be under epigenetic control.
Resumo:
The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.
Resumo:
Rationale: Children with atopic diseases in early life are frequently found with positive IgE tests to nuts, without a history of previous ingestion. We aimed to identify risk factors for reactions to nuts at their first introduction. Methods: A detailed retrospective case note and database analysis was performed. Inclusion criteria were: patients aged 3 to 16 years who had had a standardized food challenge to peanut and/or tree nuts due to primary sensitisation to the nut (positive specific IgE or SPT). A detailed assessment was performed of factors relating to food challenge outcome with univariate and multivariate logistic regression analysis. Results: There were 98 food challenges (48% peanut, 52% tree nut) with 29 positive, 67 negative and 2 inconclusive challenges. A positive maternal history and a specific IgE > 2 kU/l were strongly associated with a significantly increased risk of a positive food challenge (OR 3.54; 95% CI 1.28 to 9.81; and OR 4.82; 95% CI 1.57 to 14.86; respectively). There was no significant association between the type of nut, age, presence of other food allergies, paternal or sibling atopic history, other atopic conditions or severity of previous reaction to other foods. Conclusions: We have demonstrated an association between the presence of a maternal atopic history and a specific IgE > 2 kU/l, and a significant increase in the likelihood of a positive food challenge in children with primary sensitisation to nuts. Although requiring further prospective validation we suggest these easily identifiable components should be considered when deciding the need for a nut challenge.
Resumo:
BACKGROUND: There are guidelines on how to develop a food challenge protocol, but at present there is no gold standard guidance on method, and separate units produce differing protocols. METHODS: We performed a retrospective analysis of 200 patients' data from the paediatric allergy units in Lausanne and Geneva, Western Switzerland, and St Thomas' Hospital (STH), UK. RESULTS: St Thomas' Hospital has a younger cohort with a lower overall mean spIgE (2.36 kU/l vs 8.00 kU/l, P = 0.004). The target peanut protein volumes differed: Switzerland 4.4 g vs STH 8.4 g. Despite this, the dose actually achieved in positive challenges was not significantly different (2.33 g vs 1.49 g, P = 0.16). 26% of challenges reacted at 4 g or more of peanut protein. CONCLUSIONS: The differences in results highlight how the variation in reasoning behind food challenge alters the outcome. Standardization of food challenges would allow easy comparison between hospitals and geographical areas for research purposes.
Resumo:
Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining. The contribution of homologous recombination to vertebrate DSB repair, however, is important. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. A model for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.
Resumo:
Skin morphogenesis, maintenance, and healing after wounding require complex epithelial-mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARbeta/delta stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARbeta/delta regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARbeta/delta regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARbeta/delta, other epithelial-mesenchymal interactions may also be regulated in a similar manner.
Resumo:
The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.
Resumo:
Some Toll and Toll-like receptors (TLRs) provide immunity to experimental infections in animal models, but their contribution to host defense in natural ecosystems is unknown. We report a dominant-negative TLR3 allele in otherwise healthy children with herpes simplex virus 1 (HSV-1) encephalitis. TLR3 is expressed in the central nervous system (CNS), where it is required to control HSV-1, which spreads from the epithelium to the CNS via cranial nerves. TLR3 is also expressed in epithelial and dendritic cells, which apparently use TLR3-independent pathways to prevent further dissemination of HSV-1 and to provide resistance to other pathogens in TLR3-deficient patients. Human TLR3 appears to be redundant in host defense to most microbes but is vital for natural immunity to HSV-1 in the CNS, which suggests that neurotropic viruses have contributed to the evolutionary maintenance of TLR3.