7 resultados para Kinetic wave energy
em Université de Lausanne, Switzerland
Resumo:
Rockfall hazard zoning is usually achieved using a qualitative estimate of hazard, and not an absolute scale. In Switzerland, danger maps, which correspond to a hazard zoning depending on the intensity of the considered phenomenon (e.g. kinetic energy for rockfalls), are replacing hazard maps. Basically, the danger grows with the mean frequency and with the intensity of the rockfall. This principle based on intensity thresholds may also be applied to other intensity threshold values than those used in Switzerland for rockfall hazard zoning method, i.e. danger mapping. In this paper, we explore the effect of slope geometry and rockfall frequency on the rockfall hazard zoning. First, the transition from 2D zoning to 3D zoning based on rockfall trajectory simulation is examined; then, its dependency on slope geometry is emphasized. The spatial extent of hazard zones is examined, showing that limits may vary widely depending on the rockfall frequency. This approach is especially dedicated to highly populated regions, because the hazard zoning has to be very fine in order to delineate the greatest possible territory containing acceptable risks.
Resumo:
Hsp70-Hsp40-NEF and possibly Hsp100 are the only known molecular chaperones that can use the energy of ATP to convert stably pre-aggregated polypeptides into natively refolded proteins. However, the kinetic parameters and ATP costs have remained elusive because refolding reactions have only been successful with a molar excess of chaperones over their polypeptide substrates. Here we describe a stable, misfolded luciferase species that can be efficiently renatured by substoichiometric amounts of bacterial Hsp70-Hsp40-NEF. The reactivation rates increased with substrate concentration and followed saturation kinetics, thus allowing the determination of apparent V(max)' and K(m)' values for a chaperone-mediated renaturation reaction for the first time. Under the in vitro conditions used, one Hsp70 molecule consumed five ATPs to effectively unfold a single misfolded protein into an intermediate that, upon chaperone dissociation, spontaneously refolded to the native state, a process with an ATP cost a thousand times lower than expected for protein degradation and resynthesis.
Resumo:
PURPOSE: The origin of the slow component is not fully understood. The mechanical hypothesis is one of the potential factors, because an increase in external mechanical work with fatigue was previously reported for a constant velocity run. The purpose of this study was to determine whether a change in mechanical work could occur during the development of the VO2 slow component under the effect of fatigue. METHODS: Twelve regional-level competitive runners performed a square-wave transition, corresponding to 95% of the speed associated with peak VO2 obtained during an incremental test. The VO2 response was fit with a classical model including two exponential functions. A specific treadmill with three-dimensional force transducers was used to measure the ground reaction force. Kinetic work (W(kin)), potential work (W(pot)), external work (W(ext)), and an index of internal work (W(int)) per unit of distance were quantified continuously. RESULTS: During the slow component of VO2, a significant increase in W (P< 0.01), no change in W, and a significant decrease in W and W index (P< 0.05, P< 0.001, respectively) were observed. CONCLUSION: The present study showed that the slow component of VO2 did not result partly from a change in mechanical work under the effect of fatigue. Nevertheless, the decrease in stride frequency (P< 0.001) and contact time (P< 0.001) suggested an alternative mechanical explanation. The slow component during running may be due to the cost of generating force or to alterations in the storage and recoil of elastic energy, and not to the external mechanical work.
Resumo:
Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption. However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and pathological conditions in order to face evolving energy demands.
Resumo:
Explicitly correlated coupled-cluster calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented. Results obtained with the recently proposed CCSD(T)-F12a method and augmented double-zeta basis sets are found to be in very close agreement with basis set extrapolated conventional CCSD(T) results. Furthermore, we propose a dispersion-weighted MP2 (DW-MP2) approximation that combines the good accuracy of MP2 for complexes with predominately electrostatic bonding and SCS-MP2 for dispersion-dominated ones. The MP2-F12 and SCS-MP2-F12 correlation energies are weighted by a switching function that depends on the relative HF and correlation contributions to the interaction energy. For the S22 set, this yields a mean absolute deviation of 0.2 kcal/mol from the CCSD(T)-F12a results. The method, which allows obtaining accurate results at low cost, is also tested for a number of dimers that are not in the training set.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.
Resumo:
We present the optical properties of Na0.7CoO2 single crystals, measured over a broad spectral range as a function of temperature (T). The capability to cover the energy range from the far-infrared up to the ultraviolet allows us to perform reliable Kramers-Kronig transformation, in order to obtain the absorption spectrum (i.e., the complex optical conductivity). To the complex optical conductivity we apply the generalized Drude model, extracting the frequency dependence of the scattering rate (Gamma) and effective mass (m*) of the itinerant charge carriers. We find that Gamma(omega) at low temperatures and for similar to omega. This suggests that Na0.7CoO2 is at the verge of a spin-density-wave metallic phase.