223 resultados para Kin selection
em Université de Lausanne, Switzerland
Resumo:
Sex allocation data in eusocial Hymenoptera (ants, bees and wasps) provide an excellent opportunity to assess the effectiveness of kin selection, because queens and workers differ in their relatedness to females and males. The first studies on sex allocation in eusocial Hymenoptera compared population sex investment ratios across species. Female-biased investment in monogyne (= with single-queen colonies) populations of ants suggested that workers manipulate sex allocation according to their higher relatedness to females than males (relatedness asymmetry). However, several factors may confound these comparisons across species. First, variation in relatedness asymmetry is typically associated with major changes in breeding system and life history that may also affect sex allocation. Secondly, the relative cost of females and males is difficult to estimate across sexually dimorphic taxa, such as ants. Thirdly, each species in the comparison may not represent an independent data point, because of phylogenetic relationships among species. Recently, stronger evidence that workers control sex allocation has been provided by intraspecific studies of sex ratio variation across colonies. In several species of eusocial Hymenoptera, colonies with high relatedness asymmetry produced mostly females, in contrast to colonies with low relatedness asymmetry which produced mostly males. Additional signs of worker control were found by investigating proximate mechanisms of sex ratio manipulation in ants and wasps. However, worker control is not always effective, and further manipulative experiments will be needed to disentangle the multiple evolutionary factors and processes affecting sex allocation in eusocial Hymenoptera.
Resumo:
Variable queen mating frequencies provide a unique opportunity to study the resolution of worker-queen conflict over sex ratio in social Hymenoptera, because the conflict is maximal in colonies headed by a singly mated queen and is weak or nonexistent in colonies headed by a multiply mated queen. In the wood ant Formica exsecta, workers in colonies with a singly mated queen, but not those in colonies with a multiply mated queen, altered the sex ratio of queen-laid eggs by eliminating males to preferentially raise queens. By this conditional response to queen mating frequency, workers enhance their inclusive fitness.
Resumo:
In a recent paper, Traulsen and Nowak use a multilevel selection model to show that cooperation can be favored by group selection in finite populations [Traulsen A, Nowak M (2006) Proc Natl Acad Sci USA 103:10952-10955]. The authors challenge the view that kin selection may be an appropriate interpretation of their results and state that group selection is a distinctive process "that permeates evolutionary processes from the emergence of the first cells to eusociality and the economics of nations." In this paper, we start by addressing Traulsen and Nowak's challenge and demonstrate that all their results can be obtained by an application of kin selection theory. We then extend Traulsen and Nowak's model to life history conditions that have been previously studied. This allows us to highlight the differences and similarities between Traulsen and Nowak's model and typical kin selection models and also to broaden the scope of their results. Our retrospective analyses of Traulsen and Nowak's model illustrate that it is possible to convert group selection models to kin selection models without disturbing the mathematics describing the net effect of selection on cooperation.
Resumo:
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.
Resumo:
A cornerstone result of sociobiology states that limited dispersal can induce kin competition to offset the kin selected benefits of altruism. Several mechanisms have been proposed to circumvent this dilemma but all assume that actors and recipients of altruism interact during the same time period. Here, this assumption is relaxed and a model is developed where individuals express an altruistic act, which results in posthumously helping relatives living in the future. The analysis of this model suggests that kin selected benefits can then feedback on the evolution of the trait in a way that promotes altruistic helping at high rates under limited dispersal. The decoupling of kin competition and kin selected benefits results from the fact that by helping relatives living in the future, an actor is helping individuals that are not in direct competition with itself. A direct consequence is that behaviours which actors gain by reducing the common good of present and future generations can be opposed by kin selection. The present model integrates niche-constructing traits with kin selection theory and delineates demographic and ecological conditions under which altruism can be selected for; and conditions where the 'tragedy of the commons' can be reduced.
Resumo:
Every spring, workers of the Argentine Ant Linepithema humile kill a large proportion of queens within their nests, Although this behaviour inflicts a high energetic cost oil the colonies, its biological significance has remained elusive so far. An earlier study showed that the probability of a queen being executed is not related to her weight, fecundity, or age. Here we test the hypothesis that workers collectively eliminate queens to which they are less related, thereby increasing their inclusive fitness. We found no evidence for this hypothesis. Workers of a nest were on average not significantly less related to executed queens than to surviving ones. Moreover, a population genetic analysis revealed that workers were not genetically differentiated between nests. This means that workers of a given nest are equally related to any queen in the population and that there can be no increase in average worker-queen relatedness by selective elimination of queens. Finally, our genetic analyses also showed that, in contrast to workers, queens were significantly genetically differentiated between nests and that there was significant isolation by distance for queens.
Resumo:
The role that kin selection might play in the evolution of lekking in birds remains controversial. Recent molecular data suggest that males displaying on leks are related. Here we investigated the genetic structure and pattern of relatedness on leks of a declining population of capercaillie (Tetrao urogallus) using microsatellite genetic markers. Since the species is highly sensitive to disturbance, we adopted a non-invasive method by using faecal samples collected in the field. Based on a dataset of 50 males distributed in 6 sub-populations, we found significant genetic structuring among sub-populations, and a significant pattern of isolation by distance among leks. Estimates of relatedness showed that males displaying on the same lek were related, even when controlling for the effects of genetical differentiation among sub-populations. In addition, the frequency distribution of relatedness values indicated that leks contain a mixture of close kin and unrelated individuals (34 and 66%, respectively). This pattern is consistent with the hypothesis that leks often contain kin associations, which might be due to very restricted dispersal of some of the males or to joint dispersal of kin. The results are discussed with respect to their implication for the conservation of endangered populations.
Resumo:
Many traits and/or strategies expressed by organisms are quantitative phenotypes. Because populations are of finite size and genomes are subject to mutations, these continuously varying phenotypes are under the joint pressure of mutation, natural selection and random genetic drift. This article derives the stationary distribution for such a phenotype under a mutation-selection-drift balance in a class-structured population allowing for demographically varying class sizes and/or changing environmental conditions. The salient feature of the stationary distribution is that it can be entirely characterized in terms of the average size of the gene pool and Hamilton's inclusive fitness effect. The exploration of the phenotypic space varies exponentially with the cumulative inclusive fitness effect over state space, which determines an adaptive landscape. The peaks of the landscapes are those phenotypes that are candidate evolutionary stable strategies and can be determined by standard phenotypic selection gradient methods (e.g. evolutionary game theory, kin selection theory, adaptive dynamics). The curvature of the stationary distribution provides a measure of the stability by convergence of candidate evolutionary stable strategies, and it is evaluated explicitly for two biological scenarios: first, a coordination game, which illustrates that, for a multipeaked adaptive landscape, stochastically stable strategies can be singled out by letting the size of the gene pool grow large; second, a sex-allocation game for diploids and haplo-diploids, which suggests that the equilibrium sex ratio follows a Beta distribution with parameters depending on the features of the genetic system.
Resumo:
Kin selection is the key to understanding the evolution of cooperation in insect societies. However, kin selection also predicts potential kin conflict, and understanding how these conflicts are resolved is a major goal of current research on social insects
Resumo:
Nearly half of all ant species form polygyne societies (cohabitation of more than a single egg-laying queen). These queens are generally smaller and store fewer fat reserves than queens from monogyne colonies. Most queens in polygyne colonies (70-100 pour 100) are inseminated, although this proportion varies among species, and even among populations of the same species. They exhibit mutual tolerance and they all contribute to the reproductive effort of the colony. Nevertheless, their individual fecundity is considerably reduced compared with that of queens from monogyne colonies. This reduction in fecundity seems to be due to some form of mutual inhibition, in some cases the secretion by each female of a substance suppressing egg production in other queens has been implicated. In a few species, queens are organized into a hierarchy such that certain queens lay more eggs than others or even monopolize egg-laying (functional monogyny). Polygyny is linked to a particular life history. It rarely results from the association of several foundresses (primary polygyny). Usually, it is due to the adoption of young queens by an established nest just after a nuptial flight. This secondary polygyny means that the dispersal of the species is limited and is achieved by the budding of a mother nest. Thus colony founding is dependent; with workers accompanying young queens in establishing new colonies. Observation of closely related species exhibiting different social organizations, some monogyne and others polygyne, shows a possible link between queen number and ecological conditions: polygyne forms are more frequent in unstable habitats susceptible to rapid change, such as that caused by human activity. The existence of polygyne societies is an intriguing evolutionary mystery. Research into the origin and maintenance of polygyny focuses on patterns of speciation in relation to queen number and the different theories put forth for the evolution of eusociality, mainly kin selection and mutualism.
Resumo:
Altruism is a malleable notion that is understood differently in various disciplines. The common denominator of most definitions of altruism is the idea of unidirectional helping behaviour. However, a closer examination reveals that the term altruism sometimes refers to the outcomes of a helping behaviour for the agent and its neighbours - i.e. reproductive altruism - and sometimes to what motivates the agent to help others - i.e. psychological altruism. Since these perspectives on altruism are crucially different, it is important to use a clear terminology to avoid confusion. In particular, we show that the notion of altruism used by biologists profoundly differs from the ones used by philosophers, psychologists and economists in cross-disciplinary debates about human altruism.
Resumo:
In some ants, bees, and wasps, workers kill or "police" male eggs laid by other workers in order to maintain the reproductive primacy of the queen. Kin selection theory predicts that multiple mating by the queen is one factor that can selectively favor worker policing. This is because when the queen is mated to multiple males, workers are more closely related to the queen's sons than to the sons of other workers. Earlier work has suggested that reproductive patterns in the German wasp Vespula germanica may contradict this theory, because in some colonies a large fraction of the adult males were inferred to be the workers' sons, despite the effective queen mating frequency being greater than 2 (2.4). In the present study, we reexamine the V. germanica case and show that it does support the theory. First, genetic analysis confirms that the effective queen mating frequency is high, 2.9, resulting in workers being more related to the queen's sons than to other workers' sons. Second, behavioral assays show that worker-laid eggs are effectively killed by other workers, despite worker-laid eggs having the same intrinsic viability as queen-laid ones. Finally, we estimate that approximately 58.4% of the male eggs but only 0.44% of the adult males are worker derived in queenright colonies, consistent with worker reproduction being effectively policed.
Resumo:
The study of sex allocation in social Hymenoptera (ants, bees, and wasps) provides an excellent opportunity for testing kin-selection theory and studying conflict resolution. A queen-worker conflict over sex allocation is expected because workers are more related to sisters than to brothers, whereas queens are equally related to daughters and sons. If workers fully control sex allocation, split sex ratio theory predicts that colonies with relatively high or low relatedness asymmetry (the relatedness of workers to females divided by the relatedness of workers to males) should specialize in females or males, respectively. We performed a meta-analysis to assess the magnitude of adaptive sex allocation biasing by workers and degree of support for split sex ratio theory in the social Hymenoptera. Overall, variation in relatedness asymmetry (due to mate number or queen replacement) and variation in queen number (which also affects relatedness asymmetry in some conditions) explained 20.9% and 5% of the variance in sex allocation among colonies, respectively. These results show that workers often bias colony sex allocation in their favor as predicted by split sex ratio theory, even if their control is incomplete and a large part of the variation among colonies has other causes. The explanatory power of split sex ratio theory was close to that of local mate competition and local resource competition in the few species of social Hymenoptera where these factors apply. Hence, three of the most successful theories explaining quantitative variation in sex allocation are based on kin selection.
Resumo:
Summary Division of labor between reproducers (queens) and helpers (workers) is the main characteristic of social insect societies and at the root of their ecological success. Kin selection models predict that phenotypic differences between queens and workers should result from environmental rather than from genetic differences. However, genetic effects on queen and worker differentiation were found in two populations-of Pogonomyrmex harvester ants. Each of the two populations is composed of two genetically distinct lineages. Queens (which can be of either lineage) generally mate with males of their own and of the alternate lineage and produce two types of female offspring, those fertilized by males of the queens' lineage which develop into queens and those fertilized by males of the alternate lineage which develop into workers. All four lineages were further suggested to be themselves of hybrid origin between-the species P: barbatus and P. rugosus, in which queens and workers do not differ genetically. In a first set of experiments, we tested if female caste determination (the differentiation into queens and workers) in the lineages was genetically hardwired and if it was associated with costs in terms of the ability to optimally allocate resources to the production of queens and workers. To this end we first mated queens of-two lineages to a single male. Queens mated to a male of the alternate lineage successfully raised worker offspring whereas queens mated to a male of their own lineage almost always failed to produce workers. This reveals that pure-lineage individuals have lost the ability to develop into workers. Second, we analyzed offspring produced by naturally mated queens. During the stage of colony founding when only workers are produced, naturally mated queens laid a high proportion of pure-lineage eggs but the large majority of these eggs failed to develop. As a consequence, the number of offspring produced by incipient colonies decreased linearly with the proportion of pure-lineage eggs laid by queens. Moreover, queens of the lineage most commonly represented in a given population produced more pure-lineage eggs, in line with the view that they mate randomly with the two types of males and indiscriminately use their sperm. Altogether these results predict frequency-dependent founding success for pairs of lineages because queens of the more common lineage will produce more pure-lineage eggs and their colonies be less successful during the stage of colony founding. To describe the distribution of populations characterized with genetic caste determination relative to the populations with environmental caste determination we genotyped queens and workers collected during a large survey of -additional populations. Genetic caste determination associated with pairs of interbreeding lineages was frequent and widespread in the studied range and we identified four additional lineages displaying genetic caste determination. Overall, there were thus eight highly differentiated lineages with genetic caste determination. These lineages always co-occurred in the same complementary lineage pairs. Three of the four lineage pairs appeared to have a common origin, while their relationship with the forth could not be resolved. The genetic survey also revealed that, in addition to being genetically isolated from one another, all eight lineages were genetically distinct from P. rugosus and P. barbatus, even when colonies of interbreeding lineages co-occurred with colonies of either putative parent at the same site. This raised the question of the mechanisms involved in the reproductive isolation between the lineages and the parental species and between the two lineages of a lineage pair. At a site where one lineage pair co-occurred with P. rugosus, we identified two pre-zygotic mechanisms (differences in timing for mating flights between P. rugosus and the lineage pair and assortative mating) and one post-zygotic mechanism (high levels of hybrid unviablility) which in combination may largely account for the reproductive isolation between the lineages and their parental species. The mechanisms accounting for the reproductive isolation between the two lineages of a lineage pair varied across lineage pairs. In one lineage pair, inter-lineage individuals exclusively occurred in the sterile worker caste, raising the possibility that inter-lineage eggs have completely lost the ability to develop into queens in this lineage pair and that there is thus no opportunity for gene flow. In each of the three remaining lineage pairs, inter-lineage queens were produced by a minority of colonies. In these lineage pairs, colonies headed by inter-lineage queens failed to grow sufficiently to produce reproductive individuals which may account for the reproductive isolation between co-occurring lineages in three lineage pairs. In conclusion, the results of this thesis show that genetic caste determination is costly but widespread in Pogonomyrmex harvester ants. Reproductive isolation among the lineages and between the lineages and the parental species as well as frequency-dependent founding success for co-occurring lineages may contribute to the persistence of this extraordinary system. Résumé La division du travail entre individus reproducteurs (les reines) et individus non-reproducteurs (ouvrières) représente la caractéristique principale des sociétés d'insectes et est à la base de leur succès écologique. Des modèles de sélection de parentèle prédisent que les différences phénotypiques entre reines et ouvrières devraient provenir d'effets environnementaux plutôt que de différences génétiques. Malgré ce fait, des effets génétiques sur la différentiation entre reines et ouvrières ont été montrés dans deux populations de fourmis moissonneuses du genre Pogonomyrmex. Chacune des deux populations est composée de deux lignées génétiquement distinctes. Les reines de chaque lignée s'accouplent en général avec des mâles de leur propre lignée ainsi qu'avec des mâles de l'autre lignée et produisent deux types d'oeufs, ceux qui sont fécondés par les mâles de leur propre lignée qui se développent en nouvelles reines et ceux qui sont fécondés par les mâles de l'autre lignée qui se développent en ouvrières. Il a été suggéré que les lignées sont elles-mêmes des hybrides entre les deux espèces P. barbatus et P. rugosus. Dans ces deux espèces, les reines et ouvrières ne sont pas génétiquement distinctes. Dans une première série d'expériences, nous avons testé si la détermination de la caste femelle (le développement en reine ou en ouvrière) est génétiquement rigide et si elle est associée à des coûts en terme de capacité à allouer de façon optimale les ressources pour la production de reines et d'ouvrières. Pour cela nous avons accouplé des reines de deux lignées avec un seul mâle. Les reines accouplées avec un mâle de l'autre lignée ont élevé de nouvelles ouvrières avec succès alors que les reines accouplées avec un mâle de leur propre lignée ont presque toujours échoué à produire des ouvrières. Ceci montre que les individus de lignée pure ont perdu la capacité de se développer en ouvrière. Deuxièmement, nous avons analysé la descendance de reines qui se sont accouplées naturellement. Durant le stade de fondation de la colonie, où seules des ouvrières sont élevées, les reines accouplées naturellement ont pondu une grande proportion d'oeufs de lignée pure mais la majorité de ces derniers ne se sont pas développés. En conséquence, le nombre de descendants produits par des colonies fondatrices diminuait linéairement avec la proportion des oeufs de lignée pure pondus par la reine en accord avec l'hypothèse que les reines s'accouplent au hasard avec les deux types de mâles et utilisent leur sperme aléatoirement. Dans l'ensemble; ces résultats prédisent un succès de fondation fréquence-dépendant pour les deux lignées, car les reines de la lignée la plus fréquente produiront .plus d'oeufs de lignée pure et leurs colonies auront moins de succès lors de la fondation de colonies par rapport aux colonies de la lignée la moins fréquente. Pour décrire la distribution des-populations caractérisées par une détermination génétique des castes par rapport aux populations caractérisées par une détermination environnementale des castes, nous avons génotypé des reines et des ouvrières qui ont été collectées lors d'une analyse de populations supplémentaires. La détermination génétique des castes associée à des croisements entre lignées est fréquente et largement répartie dans l'aire étudiée. Nous avons identifié quatre lignées supplémentaires, ayant une détermination génétique des castes, pour un total de huit lignées. Ces huit lignées forment quatre paires de lignées et on ne trouve jamais deux lignées de paires différentes, dans une population. Trois des quatre paires de lignées s'avèrent avoir une origine commune alors que leur relation avec la quatrième paire de lignées n'a pas pu être résolue. L'analyse génétique de populations supplémentaires a également révélé qu'en plus d'être génétiquement isolées les unes des autres, les huit lignées sont génétiquement distinctes de P. rugosus et P. barbatus même si les colonies d'une paire de lignées se trouvent en sympatrie avec l'une ou l'autre des espèces parentales. Ceci relève la question des mécanismes impliqués dans l'isolation reproductive entre les lignées et les espèces parentales ainsi qu'entre les deux lignées d'une paire. En étudiant un site où une paire de lignées se trouve en sympatrie avec P. rugosus, nous avons identifié deux mécanismes pré-zygotiques (des différences dans le timing du vol nuptial entre P. rugosus et les lignées et des accouplements assortis) ainsi qu'un mécanisme post-zygotique (un niveau élevé de non-viabilité des hybrides). En combinaison, ces mécanismes peuvent largement expliquer l'isolement reproductif entre les lignées et leurs espèces parentales. Les mécanismes contribuant à l'isolement reproductif entre les deux lignées d'une paire variaient entre paires de lignées. Dans une paire, les individus de génotype inter-lignée se trouvent uniquement dans la caste stérile des ouvrières, suggérant qu'il n'y a pas d'opportunité pour avoir du flux de gènes entre les deux lignées ce cette paire. Dans chacune des trois autres paires de lignées des nouvelles reines de génotype inter-lignée sont produites par une minorité de colonies. Par contre, les colonies avec une reine mère de génotype inter-lignée ne se développent pas suffisamment pour produire des individus reproducteurs. Ceci peut donc expliquer pourquoi il n'y a pas de flux de gènes entre les deux lignées de trois paires. En conclusion, les résultats de cette thèse montrent que la détermination génétique de la caste est coûteuse mais très répandue chez les fourmis. moissonneuses du genre Pogonomyrmex. L'isolement reproductif des lignées entre elles et avec les espèces parentales, ainsi qu'un succès de fondation fréquence-dépendant contribuent à la persistance de ce système extraordinaire.
Resumo:
The evolution of eusociality, here defined as the emergence of societies with reproductive division of labour and cooperative brood care, was first seen as a challenge to Darwin's theory of evolution by natural selection. Why should individuals permanently forgo direct reproduction to help other individuals to reproduce? Kin selection, the indirect transmission of genes through relatives, is the key process explaining the evolution of permanently nonreproductive helpers. However, in some taxa helpers delay reproduction until a breeding opportunity becomes available. Overall, eusociality evolved when ecological conditions promote stable associations of related individuals that benefit from jointly exploiting and defending common resources. High levels of cooperation and robust mechanisms of division of labour are found in many animal societies. However, conflicts among individuals are still frequent when group members that are not genetically identical compete over reproduction or resource allocation.