15 resultados para Jenkins, Keith
em Université de Lausanne, Switzerland
Resumo:
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P< or =5x10(-8)). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P< or =0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2x10(-19) for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9x10(-8), n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5x10(-6), n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2x10(-3), n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.
Resumo:
Fistulizing Crohn's disease represents an evolving, yet unresolved, issue for multidisciplinary management. Perianal fistulas are the most frequent findings in fistulizing Crohn's disease. While enterocutaneous fistulas are rare, they are associated with considerable morbidity and mortality. Detailed evaluation of the fistula tract by advanced imaging techniques is required to determine the most suitable management options. The fundamentals of perianal fistula management are to evaluate the complexity of the fistula tract, and exclude proctitis and associated abscess. The main goals of the treatment are abscess drainage, which is mandatory, before initiating immunosuppressive medical therapy, resolution of fistula discharge, preservation of continence and, in the long term, avoidance of proctectomy with permanent stoma. The management of enterocutaneous fistulas comprises of sepsis control, skin care, nutritional optimization and, if needed, delayed surgery.
Resumo:
Aim. Stressful life events are an important contributor to the onset and course of depression. Coping strategies and interpersonal patterns have been found to mediate the effects of stress [1]. Methods. This study examined the relationship between coping patterns and interpersonal interactions in early psychotherapy sessions of 25 female patients with major depression. Transcripts were rated for coping patterns using the Coping Patterns Rating Scale (CPRS; [2]). Interpersonal patterns were assessed using the Structural Analysis of Social Behavior (SASB; [3]). Results. Significant correlations were found between coping patterns and markers of interpersonal functioning in selected contexts. Discussion. The implications of these findings in understanding an important aspect of vulnerability to depression and enhancing treatment outcome are discussed.
Resumo:
The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.
North-African house martins endure greater haemosporidian infection than their European counterparts
Resumo:
Afro-Palearctic migrant species are exposed to parasites at both breeding and over-wintering grounds. The house martin Delichon urbicum is one such migratory species facing high instances of blood parasite infection. In an attempt to determine whether breeding European house martins harbour similar blood parasite communities to populations breeding in North Africa, birds were sampled at their breeding grounds in Switzerland and Algeria. Moreover, haemosporidian prevalence and parasite communities were compared to published data sets on Spanish and Dutch breeding populations. This study furthermore wanted to establish whether co-infection with multiple genera or lineages of parasites had negative effects on host body condition. Breeding house martins caught in Algeria showed a higher prevalence of avian haemosporidian parasites than did European populations. Swiss house martins showed a prevalence comparable to that of Spanish and Dutch populations. There were slight differences in the haemosporidian community between European and North-African populations in terms of composition and abundance of each lineage. Similar to the Dutch house martins, but in contrast to the Spanish population, infection status and number of genera of parasites infecting single hosts did not inFLuence Swiss house martin body condition.
Resumo:
Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity-ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.
Resumo:
PURPOSE: The current study tested the applicability of Jessor's problem behavior theory (PBT) in national probability samples from Georgia and Switzerland. Comparisons focused on (1) the applicability of the problem behavior syndrome (PBS) in both developmental contexts, and (2) on the applicability of employing a set of theory-driven risk and protective factors in the prediction of problem behaviors. METHODS: School-based questionnaire data were collected from n = 18,239 adolescents in Georgia (n = 9499) and Switzerland (n = 8740) following the same protocol. Participants rated five measures of problem behaviors (alcohol and drug use, problems because of alcohol and drug use, and deviance), three risk factors (future uncertainty, depression, and stress), and three protective factors (family, peer, and school attachment). Final study samples included n = 9043 Georgian youth (mean age = 15.57; 58.8% females) and n = 8348 Swiss youth (mean age = 17.95; 48.5% females). Data analyses were completed using structural equation modeling, path analyses, and post hoc z-tests for comparisons of regression coefficients. RESULTS: Findings indicated that the PBS replicated in both samples, and that theory-driven risk and protective factors accounted for 13% and 10% in Georgian and Swiss samples, respectively in the PBS, net the effects by demographic variables. Follow-up z-tests provided evidence of some differences in the magnitude, but not direction, in five of six individual paths by country. CONCLUSION: PBT and the PBS find empirical support in these Eurasian and Western European samples; thus, Jessor's theory holds value and promise in understanding the etiology of adolescent problem behaviors outside of the United States.
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
Dispersal is one of the most important, yet least understood phenomena of evolutionary ecology. Triggers and consequences of dispersal are difficult to study in natural populations since dispersers can typically only be identified a posteriori. Therefore, a lot of work on dispersal is either of a theoretical nature or based on anecdotal observation. This is especially true for cryptic species such as small mammals. We conducted an experiment on the common vole, Microtus arvalis, in semi-natural enclosures and investigated the spatial and genetic establishment success of residents and dispersers in their natal and new populations. Our study uses genetic data on the reproductive success of 1255 individuals to measure the fitness trajectories of the residents and dispersing individuals. In agreement with past studies, we found that dispersal was highly male-biased, and was most probably induced by the agonistic encounters with conspecifics, suggesting it could act as an inbreeding avoidance mechanism. There was low breeding success of dispersers into new populations. Although nearly 26% of identified dispersers reproduced in their natal populations, only seven percent reproduced in the new populations. Settlement appeared to be a pre-requisite for reproduction in both sexes, and animals that did not spatially settle into a new population dispersed again, usually on the same day of immigration. In the event that dispersers reproduced in the new population, they did so at relatively low population densities. We also found age-related differences between the sexes in breeding success, and male dispersers that subsequently established in the new population were young individuals that had not reproduced in their natal population, whereas successful females had already reproduced in their natal population. In conclusion, with our detailed field data on establishment and substantial parentage assignments to understand breeding success, we were able to gain an insight into the fitness of dispersers, and how the two sexes optimise their fitness. Taken together, our results help to further understand the relative advantages and costs of dispersal in the common vole.
Resumo:
Climate-driven range fluctuations during the Pleistocene have continuously reshaped species distribution leading to populations of contrasting genetic diversity. Contemporary climate change is similarly influencing species distribution and population structure, with important consequences for patterns of genetic diversity and species' evolutionary potential1. Yet few studies assess the impacts of global climatic changes on intraspecific genetic variation2, 3, 4, 5. Here, combining analyses of molecular data with time series of predicted species distributions and a model of diffusion through time over the past 21 kyr, we unravel caribou response to past and future climate changes across its entire Holarctic distribution. We found that genetic diversity is geographically structured with two main caribou lineages, one originating from and confined to Northeastern America, the other originating from Euro-Beringia but also currently distributed in western North America. Regions that remained climatically stable over the past 21 kyr maintained a high genetic diversity and are also predicted to experience higher climatic stability under future climate change scenarios. Our interdisciplinary approach, combining genetic data and spatial analyses of climatic stability (applicable to virtually any taxon), represents a significant advance in inferring how climate shapes genetic diversity and impacts genetic structure.
Resumo:
While the previous chapter by L. Fallowfield and V. Jenkins focuses on different communication skills training (CST) concepts currently being utilized, this chapter reviews and comments the scientific evidence of the impact of CST on improving communication skills. The aim of this chapter is not to provide a complete review of the evidence-this has already been done in systematic reviews-but to discuss the scientific evidence and reflect on the available results and relevant topics for further investigations.
Resumo:
Finding out whether Plasmodium spp. are coevolving with their vertebrate hosts is of both theoretical and applied interest and can influence our understanding of the effects and dynamics of malaria infection. In this study, we tested for local adaptation as a signature of coevolution between malaria blood parasites, Plasmodium spp. and its host, the great tit, Parus major. We conducted a reciprocal transplant experiment of birds in the field, where we exposed birds from two populations to Plasmodium parasites. This experimental set-up also provided a unique opportunity to study the natural history of malaria infection in the wild and to assess the effects of primary malaria infection on juvenile birds. We present three main findings: i) there was no support for local adaptation; ii) there was a male-biased infection rate; iii) infection occurred towards the end of the summer and differed between sites. There were also site-specific effects of malaria infection on the hosts. Taken together, we present one of the few experimental studies of parasite-host local adaptation in a natural malaria system, and our results shed light on the effects of avian malaria infection in the wild.