3 resultados para J.M. Butler
em Université de Lausanne, Switzerland
Resumo:
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
Resumo:
OBJECTIVES: The purpose of this study was to evaluate the association between inflammation and heart failure (HF) risk in older adults. BACKGROUND: Inflammation is associated with HF risk factors and also directly affects myocardial function. METHODS: The association of baseline serum concentrations of interleukin (IL)-6, tumor necrosis factor-alpha, and C-reactive protein (CRP) with incident HF was assessed with Cox models among 2,610 older persons without prevalent HF enrolled in the Health ABC (Health, Aging, and Body Composition) study (age 73.6 +/- 2.9 years; 48.3% men; 59.6% white). RESULTS: During follow-up (median 9.4 years), HF developed in 311 (11.9%) participants. In models controlling for clinical characteristics, ankle-arm index, and incident coronary heart disease, doubling of IL-6, tumor necrosis factor-alpha, and CRP concentrations was associated with 29% (95% confidence interval: 13% to 47%; p < 0.001), 46% (95% confidence interval: 17% to 84%; p = 0.001), and 9% (95% confidence interval: -1% to 24%; p = 0.087) increase in HF risk, respectively. In models including all 3 markers, IL-6, and tumor necrosis factor-alpha, but not CRP, remained significant. These associations were similar across sex and race and persisted in models accounting for death as a competing event. Post-HF ejection fraction was available in 239 (76.8%) cases; inflammatory markers had stronger association with HF with preserved ejection fraction. Repeat IL-6 and CRP determinations at 1-year follow-up did not provide incremental information. Addition of IL-6 to the clinical Health ABC HF model improved model discrimination (C index from 0.717 to 0.734; p = 0.001) and fit (decreased Bayes information criterion by 17.8; p < 0.001). CONCLUSIONS: Inflammatory markers are associated with HF risk among older adults and may improve HF risk stratification.
Resumo:
CONTEXT: In populations of older adults, prediction of coronary heart disease (CHD) events through traditional risk factors is less accurate than in middle-aged adults. Electrocardiographic (ECG) abnormalities are common in older adults and might be of value for CHD prediction. OBJECTIVE: To determine whether baseline ECG abnormalities or development of new and persistent ECG abnormalities are associated with increased CHD events. DESIGN, SETTING, AND PARTICIPANTS: A population-based study of 2192 white and black older adults aged 70 to 79 years from the Health, Aging, and Body Composition Study (Health ABC Study) without known cardiovascular disease. Adjudicated CHD events were collected over 8 years between 1997-1998 and 2006-2007. Baseline and 4-year ECG abnormalities were classified according to the Minnesota Code as major and minor. Using Cox proportional hazards regression models, the addition of ECG abnormalities to traditional risk factors were examined to predict CHD events. MAIN OUTCOME MEASURE: Adjudicated CHD events (acute myocardial infarction [MI], CHD death, and hospitalization for angina or coronary revascularization). RESULTS: At baseline, 276 participants (13%) had minor and 506 (23%) had major ECG abnormalities. During follow-up, 351 participants had CHD events (96 CHD deaths, 101 acute MIs, and 154 hospitalizations for angina or coronary revascularizations). Both baseline minor and major ECG abnormalities were associated with an increased risk of CHD after adjustment for traditional risk factors (17.2 per 1000 person-years among those with no abnormalities; 29.3 per 1000 person-years; hazard ratio [HR], 1.35; 95% CI, 1.02-1.81; for minor abnormalities; and 31.6 per 1000 person-years; HR, 1.51; 95% CI, 1.20-1.90; for major abnormalities). When ECG abnormalities were added to a model containing traditional risk factors alone, 13.6% of intermediate-risk participants with both major and minor ECG abnormalities were correctly reclassified (overall net reclassification improvement [NRI], 7.4%; 95% CI, 3.1%-19.0%; integrated discrimination improvement, 0.99%; 95% CI, 0.32%-2.15%). After 4 years, 208 participants had new and 416 had persistent abnormalities. Both new and persistent ECG abnormalities were associated with an increased risk of subsequent CHD events (HR, 2.01; 95% CI, 1.33-3.02; and HR, 1.66; 95% CI, 1.18-2.34; respectively). When added to the Framingham Risk Score, the NRI was not significant (5.7%; 95% CI, -0.4% to 11.8%). CONCLUSIONS: Major and minor ECG abnormalities among older adults were associated with an increased risk of CHD events. Depending on the model, adding ECG abnormalities was associated with improved risk prediction beyond traditional risk factors.