5 resultados para Isolamento do Toxoplasma gondii de órgãos
em Université de Lausanne, Switzerland
Resumo:
Ocular toxoplasmosis is the principal cause of posterior uveitis and a leading cause of blindness. Animal models are required to improve our understanding of the pathogenesis of this disease. The method currently used for the detection of retinal cysts in animals involves the observation, under a microscope, of all the sections from infected eyes. However, this method is time-consuming and lacks sensitivity. We have developed a rapid, sensitive method for observing retinal cysts in mice infected with Toxoplasma gondii. This method involves combining the flat-mounting of retina - a compromise between macroscopic observation and global analysis of this tissue - and the use of an avirulent recombinant strain of T. gondii expressing the Escherichia coli beta-galactosidase gene, visually detectable at the submacroscopic level. Single cyst unilateral infection was found in six out of 17 mice killed within 28 days of infection, whereas a bilateral infection was found in only one mouse. There was no correlation between brain cysts number and ocular infection.
Resumo:
Toxoplasmosis is an infectious disease caused by the intracellular parasite Toxoplasma gondii. In Switzerland about a third of the population has antibodies against this pathogen and has thus already been in contact with the parasite or has contracted the disease. Immunocompetent patients are usually asymptomatic (80-90%) during primary infection. The most common symptom is neck or occipital lymphadenopathy. Serology is the diagnostic gold standard in immunocompetent individuals. The presence of IgM antibodies is however not sufficient to make a definite diagnosis of acute toxoplasmosis. Distinction between acute and chronic toxoplasmosis requires additional serological tests (IgG avidity test). If required, the most used and probably most effective treatment is the combination of pyrimethamine and sulfadiazine, with folinic acid.
Resumo:
Pyrimethamine is used as and anti-infectious agent because of its antifolate properties. Its action is synergistic with that of dapsone and sulfamides on Toxoplasma gondii. The goal of the present study was to evaluate the placental transfer of pyrimethamine in an ex vivo model of perfused human placental cotyledon at term. Human placentas were perfused according to the slightly modified method of Schneider. The pyrimethamine fetal transfer rate was approximately 30%, while cotyledon clearance was about 1.8 ml/min. The placental transfer of pyrimethamine seems to be independent of the maternal concentrations of pyrimethamine, suggesting passive diffusion mechanisms or a nonsaturable active transport at the tested concentrations.
Resumo:
β-Catenin signaling has recently been tied to the emergence of tolerogenic dendritic cells (DCs). In this article, we demonstrate a novel role for β-catenin in directing DC subset development through IFN regulatory factor 8 (IRF8) activation. We found that splenic DC precursors express β-catenin, and DCs from mice with CD11c-specific constitutive β-catenin activation upregulated IRF8 through targeting of the Irf8 promoter, leading to in vivo expansion of IRF8-dependent CD8α(+), plasmacytoid, and CD103(+)CD11b(-) DCs. β-Catenin-stabilized CD8α(+) DCs secreted elevated IL-12 upon in vitro microbial stimulation, and pharmacological β-catenin inhibition blocked this response in wild-type cells. Upon infections with Toxoplasma gondii and vaccinia virus, mice with stabilized DC β-catenin displayed abnormally high Th1 and CD8(+) T lymphocyte responses, respectively. Collectively, these results reveal a novel and unexpected function for β-catenin in programming DC differentiation toward subsets that orchestrate proinflammatory immunity to infection.