9 resultados para Intraplate seismicity, intraplate South America
em Université de Lausanne, Switzerland
Resumo:
The South America-Antarctica plate system shows many oceanic accretionary systems and subduction zones that initiated and then stopped. To better apprehend the evolution of the system, geodynamic reconstructions (global) have been created from Jurassic (165 Ma) to present, following the techniques used at the University of Lausanne. However, additional synthetic magnetic anomalies were used to refine the geodynamics between 33 Ma and present. The reconstructions show the break up of Gondwana with oceanisation between South America (SAM) and Antarctica (ANT), together with the break off of `Andean' geodynamical units (GDUs). We propose that oceanisation occurs also east and south of the Scotian GDUs. Andean GDUs collide with other GDUs crossing the Pacific. The west coast of SAM and ANT undergo a subsequent collision with all those GDUs between 103 Ma and 84 Ma, and the Antarctic Peninsula also collides with Tierra del Fuego. The SAM-ANT plate boundary experienced a series of extension and shortening with large strike-slip component, culminating with intra-oceanic subduction leading to the presence of the `V-' and anomalies in the Weddell Sea. From 84 Ma, a transpressive collision takes place in the Scotia region, with active margin to the east. As subduction propagates northwards into an old and dense oceanic crust, slab roll-back initiates, giving rise to the western Scotia Sea and the Powell Basin opening. The Drake Passage opens. As the Scotian GDUs migrate eastwards, there is enough space for them to spread and allow a north-south divergence with a spreading axis acting simultaneously with the western Scotia ridge. Discovery Bank stops the migration of South Orkney and `collides with' the SAM-ANT spreading axis, while the northern Scotian GDUs are blocked against the Falkland Plateau and the North-East Georgia Rise. The western and central Scotia and the Powell Basin spreading axes must cease, and the ridge jumps to create the South Sandwich Islands Sea. The Tierra del Fuego-Patagonia region has always experienced mid-oceanic ridge subduction since 84 Ma. Slab window location is also presented (57-0 Ma), because of its important implication for heat flux and magmatism. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
AimOur aim was to understand the interplay of heterogeneous climatic and spatial landscapes in shaping the distribution of nuclear microsatellite variation in burrowing parrots, Cyanoliseus patagonus. Given the marked phenotypic differences between populations of burrowing parrots we hypothesized an important role of geographical as well climatic heterogeneity in the population structure of this species. LocationSouthern South America. MethodsWe applied a landscape genetics approach to investigate the explicit patterns of genetic spatial autocorrelation based on both geography and climate using spatial principal component analysis (sPCA). This necessitated a novel statistical estimation of the species climatic landscape, considering temperature- and precipitation-based variables separately to evaluate their weight in shaping the distribution of genetic variation in our model system. ResultsGeographical and climatic heterogeneity successfully explained molecular variance in burrowing parrots. sPCA divided the species distribution into two main areas, Patagonia and the pre-Andes, which were connected by an area of geographical and climatic transition. Moreover, sPCA revealed cryptic and conservation-relevant genetic structure: the pre-Andean populations and the transition localities were each divided into two groups, each management units for conservation. Main conclusionssPCA, a method originally developed for spatial genetics, allowed us to unravel the genetic structure related to spatial and climatic landscapes and to visualize these patterns in landscape space. These novel climatic inferences underscore the importance of our modified sPCA approach in revealing how climatic variables can drive cryptic patterns of genetic structure, making the approach potentially useful in the study of any species distributed over a climatically heterogeneous landscape.
Resumo:
Depuis la promulgation de l'arrêt « Bosman » en 1995, le nombre de joueurs expatriés recensés dans les principaux championnats européens a considérablement augmenté. Cet article montre que cette augmentation a surtout concerné les joueurs originaires d'Afrique et d'Amérique latine. Leur mobilité intervient dans un contexte très spéculatif au sein duquel de nombreux intermédiaires interagissent pour construire les canaux migratoires permettant aux joueurs de circuler à travers différents pays. Les trajectoires idéales - typiques de joueurs africains en Europe - permettent d'illustrer les logiques sociales, géographiques et économiques à la base de ces flux. Since the "Bosman" law in 1995, the number of expatriate players in the best European leagues has strongly increased. This paper shows that this increase has above all concerned players from Africa and South America. The mobility of these footballers occurs in a highly speculative context in which numerous intermediaries intervene to build up the migratory channels that allow players for circulating between many countries. The ideal-typical career paths of African footballers in Europe permit to illustrate the social, geographic and economic logics underlying flows.
Resumo:
Sections through an oceanic plateau are preserved in tectonic slices in the Western Cordillera of Ecuador (South America). The San Juan section is a sequence of mafic-ultramafic cumulates. To establish that these plutonic rocks formed in an oceanic plateau setting, we have developed criteria that discriminate intrusions of oceanic plateaus from those of other tectonic settings. The mineralogy and crystallization sequence of the cumulates are similar to those of intra-plate magmas. Clinopyroxene predominates throughout, and orthopyroxene is only a minor component. Rocks of intermediate composition are absent, and hornblende is restricted to the uppermost massive gabbros within the sequence. The ultramafic cumulates are very depleted in light rare-earth elements (LREE), whereas the gabbros have flat or slightly enriched LREE patterns. The composition of the basaltic liquid in equilibrium with the peridotite, calculated using olivine compositions and REE contents of clinopyroxene, contains between 16% and 8% MgO and has a flat REE pattern. This melt is geochemically similar to other accreted oceanic plateau basalts, isotropic gabbros, and differentiated sills in western Ecuador. The Ecuadorian intrusive and extrusive rocks have a narrow range of epsilonNd(i) (+8 to +5) and have a rather large range of Pb isotopic ratios. Pb isotope systematics of the San Juan plutonic rocks and mineral separates lie along a mixing line between the depleted mantle (DMM) and the enriched-plume end members. This suggests that the Ecuadorian plutonic rocks generated from the mixing of two mantle sources, a depleted mid-oceanic ridge basalt (MORB) source and an enriched one. The latter is characterized by high (Pb-207/Pb-204)(i) ratios and could reflect a contamination by recycled either lower continental crust or oceanic pelagic sediments and (or) altered oceanic crust (enriched mantle type I, EMI). These data suggest that the San Juan sequence represents the plutonic components of an Early Cretaceous oceanic plateau, which accreted in the Late Cretaceous to the Ecuadorian margin.
Resumo:
Arenaviruses are enveloped negative strand viruses that cause acute and chronic infections. Several Arenaviruses can cause severe hemorrhagic fever in humans. In West Africa Lassa virus causes several hundred thousand infections per year, while Junin, Machupo, Guanarito, and Sabia virus have emerged in South America. So far, only one drug is licensed against arenaviruses, the nucleoside analogue Ribavirin (Rib), which is effective when given early in disease, but shows only minor therapeutic effects in late stages of the infection. Previous works demonstrated that processing of the arenavirus glycoprotein precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexinisozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infectionand production of infectious virus. Recently, the SKI-1/S1P inhibitor PF-429242wasshownto inhibit Old World arenavirusGPCprocessing, cell-to-cell propagation, and infectious virus production. In the present study, we assessed the activity of PF-429242 against processing of the GPCs of the genetically and structurally more distant New World arenaviruses and found potent inhibition of processing of the GPCs of Junin, Machupo, and Guanarito virus. Using the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), we studied the potency of PF-429242 in the context of acute and chronic infection. In line with published data, PF-429242 potently inhibited acute LCMV infection. PF-429242 was also highly active against chronic infection and drug treatment resulted in rapid extinction of the virus without emergence of drug-resistant variants. In a combinatorial drug approach, we found that PF-429242 potentiated the anti-viral effect of Rib in treatment of acute andchronic infection. Taken together, we showed that the SKI-1/S1P inhibitor PF-429242 is broadly active against GPC processing of all major human pathogenic arenaviruses. Apart from being potent in acute infection, the drug is remarkably active in clearing chronic infection and potentiated the anti-arenaviral activity of Rib.
Resumo:
The oxalate-carbonate pathway (OCP) is a biogeochemical process, which has been described in Milicia excelsa tree ecosystems of Africa. This pathway involves biological and geological parameters at different scales: oxalate, as a by-product of photosynthesis, is oxidized by oxalotrophic bacteria leading to a local pH increase, and eventually to carbonate accumulation through time in previously acidic and carbonate-free tropical soils. Former studies have shown that this pedogenic process can potentially lead to the formation of an atmospheric carbon sink. Considering that 80% of plant species are known to produce oxalate, it is reasonable to assume that M. excelsa is not the only tree that can support OCP ecosystems. The search for similar conditions on another continent led us to South America, in an Amazon forest ecosystem (Alto Beni, Bolivia). This area was chosen because of the absence of local inherited carbonate in the bedrock, as well as its expected acidic soil conditions. Eleven tree species and associated soils were tested positive for the presence of carbonate with a more alkaline soil pH close to the tree than at a distance from it. A detailed study of Pentaplaris davidsmithii and Ceiba speciosa trees showed that oxalotrophy impacted soil pH in a similar way to at African sites (at least with 1 pH unit increasing). African and South American sites display similar characteristics regarding the mineralogical assemblage associated with the OCP, except for the absence of weddellite. The amount of carbonate accumulated is 3 to 4 times lower than the values measured in African sites related to M. excelsa ecosystems. Still, these secondary carbonates remain critical for the continental carbon cycle, as they are unexpected in the acidic context of Amazonian soils. Therefore, the present study demonstrates the existence of an active OCP in South America. The three critical components of an operating OCP are the presence of: i) local alkalinization, ii) carbonate accumulations, and iii) oxalotrophic bacteria, which were identified associated to the oxalogenic tree C. speciosa. If the question of a potential carbon sink related to oxalotrophic-oxalogenic ecosystems in the Amazon Basin is still pending, this study highlights the implication of OCP ecosystems on carbon and calcium biogeochemical coupled cycles. As previously mentioned for M. excelsa tree ecosystems in Africa, carbonate accumulations observed in the Bolivian tropical forest could be extrapolated to part or the whole Amazon Basin and might constitute an important reservoir that must be taken into account in the global carbon balance of the Tropics.
Resumo:
BACKGROUND: Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica. METHODOLOGY/PRINCIPAL FINDINGS: A new LRV member was identified in four L. aethiopica strains (LRV-Lae). Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique -1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1. CONCLUSIONS/SIGNIFICANCE: In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania) and (Viannia) subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed.
Resumo:
Among the various work stress models, one of the most popular has been the job demands-control (JDC) model developed by Karasek (1979), which postulates that work-related strain is highest under work conditions characterized by high demands and low autonomy. The absence of social support at work further increases negative outcomes. This model, however, does not apply equally to all individuals and to all cultures. This review demonstrates how various individual characteristics, especially some personality dimensions, influence the JDC model and could thus be considered buffering or moderator factors. Moreover, we review how the cultural context impacts this model as suggested by results obtained in European, American, and Asian contexts. Yet there are almost no data from Africa or South America. More crosscultural studies including populations from these continents would be valuable for a better understanding of the impact of the cultural context on the JDC model.
Resumo:
L'activité humaine affecte particulièrement la biodiversité, qui décline à une vitesse préoccupante. Parmi les facteurs réduisant la biodiversité, on trouve les espèces envahissantes. Symptomatiques d'un monde globalisé où l'échange se fait à l'échelle de la planète, certaines espèces, animales ou végétales, sont introduites, volontairement ou accidentellement par l'activité humaine (par exemple lors des échanges commerciaux ou par les voyageurs). Ainsi, ces espèces atteignent des régions qu'elles n'auraient jamais pu coloniser naturellement. Une fois introduites, l'absence de compétiteur peut les rendre particulièrement nuisibles. Ces nuisances sont plus ou moins directes, allant de problèmes sanitaires (p. ex. les piqûres très aigües des fourmis de feu, originaires d'Amérique du Sud et colonisant à une vitesse fulgurante les USA, l'Australie ou la Chine) à des nuisances sur la biodiversité (p. ex. les ravages de la perche du Nil sur la diversité unique des poissons Cichlidés du Lac Victoria). Il est donc important de pouvoir prévenir de telles introductions. De plus, pour le biologiste, ces espèces représentent une rare occasion de pouvoir comprendre les mécanismes évolutifs et écologiques qui expliquent le succès des envahissantes dans un monde où les équilibres sont bouleversés. Les modèles de niche environnementale sont un outil particulièrement utile dans le cadre de cette problématique. En reliant des observations d'espèces aux conditions environnementales où elles se trouvent, ils peuvent prédire la distribution potentielle des envahissantes, permettant d'anticiper et de mieux limiter leur impact. Toutefois, ils reposent sur des hypothèses pas évidentes à démontrer. L'une d'entre elle étant que la niche d'une espèce reste constante dans le temps, et dans l'espace. Le premier objectif de mon travail est de comparer si la niche d'une espèce envahissante diffère entre sa distribution d'origine native et celle d'origine introduite. En étudiant 50 espèces de plantes et 168 espèces de Mammifères, je démontre que c'est le cas et que par corolaire, il est possible de prédire leurs distributions. La deuxième partie de mon travail consiste à comprendre quelles seront les interactions entre le changement climatiques et les envahissantes, afin d'estimer leur impact sous un climat réchauffé. En étudiant la distribution de 49 espèces de plantes envahissantes, je démontre que les montagnes, régions relativement préservée par ce problème, deviendront bien plus exposées aux risques d'invasions biologiques. J'expose aussi comment les interactions entre l'activité humaine, le réchauffement climatique et les espèces envahissantes menacent la vigne sauvage en Europe et propose des zones géographiques particulièrement adaptée pour sa conservation. Enfin, à une échelle beaucoup plus locale, je montre qu'il est possible d'utiliser ces modèles de niches le long d'une rivière à une échelle extrêmement fine (1 mètre), potentiellement utile pour rationnaliser des mesures de conservations sur le terrain. - Biodiversity is significantly negatively affected by human activity. Invasive species are one of the most important factors causing biodiversity's decline. Intimately linked to the era of global trade, some plant or animal species can be accidentally or casually introduced with human activity (e.g. trade or travel). In this way, these species reach areas they could never reach through natural dispersal. Once naturalized, the lack of competitors can make these species highly noxious. Their effect is more or less direct, from sanitary problems (e.g. the harmful sting of Fire Ants, originating from South America and now spreading throughout USA, China and Australia) or can affect biodiversity (e.g. the Nile perch, devastating the one of the richest hotspot of Cichlid fishes diversity in Lake Victoria). It is thus important to prevent such harmful introductions. Moreover, invasive species represent for biologists one of the rare occasions to understand the evolutionary and ecological mechanisms behind the success of invaders in a world where natural equilibrium is already disturbed. Environmental niche models are particularly useful to tackle this problematic. By relating species observation to the environmental conditions where they occur, they can predict the potential distribution of invasive species, allowing a better anticipation and thus limiting their impact. However, they rely on strong assumption, one of the most important being that the modeled niche remains constant through space and time. The first aim of my thesis is to quantify the difference between the native and the invaded niche. By investigating 50 plant and 168 mammal species, I show that the niche is at least partially conserved, supporting for reliable predictions of invasive' s potential distributions. The second aim of my thesis is to understand the possible interactions between climate change and invasive species, such as to assess their impact under a warmer climate. By studying 49 invasive plant species, I show that mountain areas, which were relatively preserved, will become more suitable for biological invasions. Additionally, I show how interactions between human activity, global warming and invasive species are threatening the wild grapevine in Europe and propose geographical areas particularly adapted for conservation measures. Finally, at a much finer scale where conservation plannings ultimately take place, I show that it is possible to model the niche at very high resolution (1 meter) in an alluvial area allowing better prioritizations for conservation.