136 resultados para Intestinal Mucosa

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood. Using a murine model of Salmonella enterocolitis, we analyzed mechanisms limiting pathogen loads in the epithelium during early infection. Although the epithelium-invading S.Tm replicate initially, this intraepithelial replicative niche is restricted by expulsion of infected enterocytes into the lumen. This mechanism is compromised if inflammasome components (NAIP1-6, NLRC4, caspase-1/-11) are deleted, or ablated specifically in the epithelium, resulting in ∼100-fold higher intraepithelial loads and accelerated lymph node colonization. Interestingly, the cytokines downstream of inflammasome activation, interleukin (IL)-1α/β and IL-18, appear dispensable for epithelial restriction of early infection. These data establish the role of an epithelium-intrinsic inflammasome, which drives expulsion of infected cells to restrict the pathogen's intraepithelial proliferation. This may represent a general defense mechanism against mucosal infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: HIV vaccine-candidates based on rare adenovirus serotypes such as Ad26 and Ad35 vectors, and poxvirus vectors are important components of future promising vaccine regimens that in the near future hopefully will move into a number of efficacy clinical trials in combination with protein vaccines. For these reasons, it is important to comprehensively characterize the vaccine-induced immune responses in different anatomical compartments and particularly at mucosal sites which represent the primary port of entry for HIV.Methods: In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues (rectum and ileum) of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/NYVAC-C vaccine regimen.Results: Smallpox-specific CD4 T-cell responses were present in the blood of 52% of subject studied, while Smallpox-specific CD8 T cells were rarely detected (12%). With one exception, Smallpoxspecific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed a4b7 integrins and the HIV co-receptor CCR5.Conclusion: These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and depletion of CD4 T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared it with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/ NYVAC-C vaccine regimen. Smallpox-specific CD4 T-cell responses were present in the blood of 52% of the subjects studied, while smallpox-specific CD8 T cells were rarely detected (12%). With one exception, smallpox-specific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed α4β7 integrins and the HIV coreceptor CCR5. These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and the depletion of CD4 T cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In addition to being instrumental to the protection of mucosal epithelia, secretory IgA (SIgA) adheres to and is transported by intestinal Peyer's patch (PP) M cells. The possible functional reason for this transport is unknown. We have thus examined in mice the outcome of SIgA delivered from the intestinal lumen to the cells present in the underlying organized mucosa-associated lymphoreticular tissue. We show selective association of SIgA with dendritic cells and CD4(+) T and B lymphocytes recovered from PP in vitro. In vivo, exogenously delivered SIgA is able to enter into multiple PP lining the intestine. In PP, SIgA associates with and is internalized by dendritic cells in the subepithelial dome region, whereas the interaction with CD4(+) T cells is limited to surface binding. Interaction between cells and SIgA is mediated by the IgA moiety and occurs for polymeric and monomeric molecular forms. Thus, although immune exclusion represents the main function of SIgA, transport of the Ab by M cells might promote Ag sampling under neutralizing conditions essential to the homeostasis of mucosal surfaces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6. Proteins were separated by two-dimensional polyacrylamide gel electrophoresis. Both autoradiographies and silver stained gels were analyzed. Proteins showing differential expression were identified by tryptic in-gel digestion and mass spectrometry. Metabolism related proteins were also investigated by Western blot analysis. Tryptophanyl-tRNA synthetase, indoleamine-2,3-dioxygenase, heterogeneous nuclear ribonucleoprotein JKTBP, interferon-induced 35kDa protein, proteasome subunit LMP2 and arginosuccinate synthetase were identified as cytokine modulated proteins in vitro. Using purified epithelial cells from patients, overexpression of indoleamine-2,3-dioxygenase, an enzyme involved in tryptophan metabolism, was confirmed in Crohn's disease as well as in ulcerative colitis, as compared to normal mucosa. No such difference was found in diverticulitis. Potentially, this observation opens new avenues in the treatment of IBD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The follicle-associated epithelium (FAE) that overlies Peyer's patches (PPs) exhibits distinct features compared with the adjacent villus epithelium. Besides the presence of antigen-sampling membranous M cells and the down-regulation of digestive functions, it constitutively expresses the chemokine CCL20. The mechanisms that induce FAE differentiation and CCL20 expression are poorly understood. The aim of this work was to test whether lymphotoxin beta receptor signaling (LTbetaR), which plays a central role in PPs' organogenesis, mediates CCL20 gene expression in intestinal epithelial cells. METHODS: CCL20, lymphotoxin beta (LTbeta) and LTbetaR expression were monitored during embryonic development by in situ hybridization of mouse intestine. The human intestinal epithelial cell line T84 was used to study CCL20 expression following LTalpha(1)/beta(2) stimulation. In vivo CCL20 expression following agonistic anti-LTbetaR antibody treatment was studied by laser microdissection and quantitative RT-PCR. RESULTS: CCL20 was expressed in the FAE before birth at the time when the first hematopoietic CD4(+)CD3(-) appeared in the PP anlage. LTbetaR was expressed in the epithelium during PP organogenesis, making it a putative target for LTalpha(1)beta(2)signals. In vitro, CCL20 was induced in T84 cells upon LTbetaR signaling, either using an agonistic ligand or anti-LTbeta receptor agonistic antibody. LTalpha(1)beta(2)-induced CCL20 expression was found to be NF-kappaB dependent. LTbetaR signaling up-regulated CCL20 expression in the small intestinal epithelium in vivo. CONCLUSIONS: Our results show that LTbetaR signaling induces CCL20 expression in intestinal epithelial cells, suggesting that this pathway triggers constitutive production of CCL20 in the FAE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Immunoglobulin (Ig) A represents the predominant antibody isotype produced at the intestinal mucosa, where it plays an important role in limiting the penetration of commensal intestinal bacteria and opportunistic pathogens. We show in mice that Peyer's Patch-derived dendritic cells (PP-DC) exhibit a specialized phenotype allowing the promotion of IgA production by B2 cells. This phenotype included increased expression of the retinaldehyde dehydrogenase 1 (RALDH1), inducible nitric oxide synthase (iNOS), B cell activating factor of the tumor necrosis family (BAFF), a proliferation-inducing ligand (APRIL), and receptors for the neuropeptide vasoactive intestinal peptide (VIP). The ability of PP-DC to promote anti-CD40 dependent IgA was partially dependent on retinoic acid (RA) and transforming growth factor (TGF)-beta, whilst BAFF and APRIL signaling were not required. Signals delivered by BAFF and APRIL were crucial for CD40 independent IgA production, although the contribution of B2 cells to this pathway was minimal. The unique ability of PP-DC to instruct naïve B cells to differentiate into IgA producing plasma cells was mainly imparted by the presence of intestinal commensal bacteria, and could be mimicked by the addition of LPS to the culture. These data indicate that exposure to pathogen-associated molecular patterns present on intestinal commensal bacteria condition DC to express a unique molecular footprint that in turn allows them to promote IgA production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (STAT) 3 is a pleiotropic transcription factor with important functions in cytokine signaling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. We demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IECs). Studies in genetically engineered mice showed that epithelial STAT3 activation in dextran sodium sulfate colitis is dependent on interleukin (IL)-22 rather than IL-6. IL-22 was secreted by colonic CD11c(+) cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC-specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3(IEC-KO) mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis, and pathways associated with wound healing in IECs. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The engagement of inhibitory receptors specific for major histocompatibility complex class I (MHC-I) molecules educates natural killer (NK) cells, meaning the improvement of the response of activation receptors to subsequent stimulation. It is not known whether inhibitory MHC-I receptors educate only NK cells or whether they improve the responsiveness of all cell types, which express them. To address this issue, we analyzed the expression of inhibitory MHC-I receptors on intestinal intraepithelial lymphocytes (iIELs) and show that T-cell receptor (TCR)-αβ CD8αα iIELs express multiple inhibitory receptors specific for MHC-I molecules, including CD94/NKG2A, Ly49A, and Ly49G2. However, the presence of MHC-I ligand for these receptors did not improve the response of iIELs to activation via the TCR. The absence of iIEL education by MHC-I receptors was not related to a lack of inhibitory function of these receptors in iIELs and a failure of these receptors to couple to the TCR. Thus, unlike NK cells, iIELs do not undergo an MHC-I-guided education process. These data suggest that education is an NK cell-specific function of inhibitory MHC-I receptors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Food allergy has reached an epidemic level in westernized countries and although central mechanisms have been described, the variability associated with genetic diversity underscores the still unresolved complexity of these disorders. OBJECTIVE: To develop models of food allergy and oral tolerance, both strictly induced by the intestinal route, and to compare antigen-specific responses. METHODS: BALB/c mice were mucosally sensitized to ovalbumin (OVA) in the presence of the mucosal adjuvant cholera toxin, or tolerized by intra-gastric administrations of OVA alone. Antibody titres and cytokines were determined by ELISA, and allergic status was determined through several physiologic parameters including decline in temperature, diarrhoea, mast cell degranulation and intestinal permeability. RESULTS: OVA-specific antibodies (IgE, IgGs and IgA in serum and feces) were produced in sensitized mice exclusively. Upon intra-gastric challenge with OVA, sensitized mice developed anaphylactic reactions associated with a decline of temperature, diarrhoea, degranulation of mast cells, which were only moderately recruited in the small intestine, and increased intestinal permeability. Cytokines produced by immune cells from sensitized mice included T-helper type 2 cytokines (IL-5, IL-13), but also IL-10, IFN-gamma and IL-17. In contrast, all markers of allergy were totally absent in tolerized animals, and yet the latter were protected from subsequent sensitization, demonstrating that oral tolerance took place efficiently. CONCLUSION: This work allows for the first time an appropriate comparison between sensitized and tolerized BALB/c mice towards OVA. It highlights important differences from other models of allergy, and thus questions some of the generally accepted notions of allergic reactions, such as the protective role of IFN-gamma, the importance of antigen-specific secretory IgA and the role of mucosal mast cells in intestinal anaphylaxis. In addition, it suggests that IL-17 might be an effector cytokine in food allergy. Finally, it demonstrates that intestinal permeability towards the allergen is increased during challenge.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mucosal epithelia of the digestive tract acts as a selective barrier, permeable to ions, small molecules and macromolecules. These epithelial cells aid the digestion of food and absorption of nutrients. They contribute to the protection against pathogens and undergo continuous cell renewal which facilitates the elimination of damaged cells. Both innate and adaptive defence mechanisms protect the gastrointestinal-mucosal surfaces against pathogens. Interaction of microorganisms with epithelial cells triggers a host response by activating specific transcription factors which control the expression of chemokines and cytokines. This host response is characterized by the recruitment of macrophages and neutrophils at the site of infection. Disruption of epithelial signalling pathways that recruit migratory immune cells results in a chronic inflammatory response. The adaptive defence mechanism relies on the collaboration of epithelial cells (resident sampling system) with antigen-presenting and lymphoid cells (migratory sampling system); in order to obtain samples of foreign antigen, these samples must be transported across the barriers without affecting the integrity of the barrier. These sampling systems are regulated by both environmental and host factors. Fates of the antigen may differ depending on the way in which they cross the epithelial barrier, i.e. via interaction with motile dendritic cells or epithelial M cells in the follicle-associated epithelium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) family of proteins comprise a group of membrane transporters involved in the transport of a wide variety of compounds, such as xenobiotics, vitamins, lipids, amino acids, and carbohydrates. Determining their regional expression patterns along the intestinal tract will further characterize their transport functions in the gut. The mRNA expression levels of murine ABC transporters in the duodenum, jejunum, ileum, and colon were examined using the Affymetrix MuU74v2 GeneChip set. Eight ABC transporters (Abcb2, Abcb3, Abcb9, Abcc3, Abcc6, Abcd1, Abcg5, and Abcg8) displayed significant differential gene expression along the intestinal tract, as determined by two statistical models (a global error assessment model and a classic ANOVA, both with a P < 0.01). Concordance with semiquantitative real-time PCR was high. Analyzing the promoters of the differentially expressed ABC transporters did not identify common transcriptional motifs between family members or with other genes; however, the expression profile for Abcb9 was highly correlated with fibulin-1, and both genes share a common complex promoter model involving the NFkappaB, zinc binding protein factor (ZBPF), GC-box factors SP1/GC (SP1F), and early growth response factor (EGRF) transcription binding motifs. The cellular location of another of the differentially expressed ABC transporters, Abcc3, was examined by immunohistochemistry. Staining revealed that the protein is consistently expressed in the basolateral compartment of enterocytes along the anterior-posterior axis of the intestine. Furthermore, the intensity of the staining pattern is concordant with the expression profile. This agrees with previous findings in which the mRNA, protein, and transport function of Abcc3 were increased in the rat distal intestine. These data reveal regional differences in gene expression profiles along the intestinal tract and demonstrate that a complete understanding of intestinal ABC transporter function can only be achieved by examining the physiologically distinct regions of the gut.