69 resultados para Interface modification
em Université de Lausanne, Switzerland
Resumo:
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.
Resumo:
L'émergence des nouvelles technologies de la reproduction (NTR) est allée de pair avec un certain nombre de discours. Un discours promettant d'une part une extension de la palette de choix reproductifs des individus, une extension de leur liberté et de leur autonomie reproductives, dont la forme la plus extrême peut se traduire par la formule : un enfant quand je veux et comme je veux. D'autre part, un discours annonçant une série de « catastrophes » à venir, telles que l'effondrement de l'institution de la famille et la modification de l'espèce humaine. En d'autres termes, une tension entre promesses et catastrophes qui place les sociétés contemporaines face à de nombreux défis sociaux, politiques et éthiques, notamment quant à la question de la régulation de la PMA (procréation médicalement assistée) : qui peut y avoir accès ? Quelles techniques doit-on autoriser ? Ou au contraire limiter ? Tant de questions auxquelles aucune réponse simple et évidente n'existe. La diversité des réponses législatives quant à ces questions illustre cette complexité. L'éthique peut, ici, jouer un rôle fondamental. Sans toutefois prétendre donner des réponses toutes faites et facilement applicables, elle offre un espace de réflexion, le privilège de prendre une certaine distance face à des enjeux contemporains. C'est dans cette perspective que nous avons ancré ce travail de recherche en questionnant les enjeux éthiques de la PMA à partir d'une perspective de justice. Toutefois, au sein des études en bioéthique, majoritairement issues de la tradition libérale, la tension énoncée précédemment mène la bioéthique à justifier un certain nombre d'inégalités plutôt que de veiller à les dépasser. Ainsi, une évaluation de la pratique de la PMA à partir d'une perspective de la justice, exige, au préalable, une réévaluation du concept même de justice. Ce faisant, par une articulation entre l'éthique du care de Joan Tronto et l'approche des capabilités de Martha Nussbaum qui placent la vulnérabilité au coeur de la personne, nous avons proposé une conception de la justice fondée sur une anthropologie de la vulnérabilité. Cette conception nous permet d'identifier, dans le cadre de la pratique de la PMA en Suisse et en partant de la loi sur la procréation assistée (LPMA), les constructions normatives qui mènent à la non-reconnaissance et, ce faisant, à la mise à l'écart, de certaines formes de vulnérabilité : une vulnérabilité générique et une vulnérabilité socio-économique. Traitant la question de la vulnérabilité générique principalement, nos analyses ont une incidence sur les conceptions de la famille, du bien de l'enfant, de la femme et de la nature, telles qu'elles sont actuellement véhiculées par une conception naturalisée de la PMA. Répondre aux vulnérabilités identifiées, en veillant à leur donner une place, signifie alors déplacer ces conceptions naturalisées, afin que les vulnérabilités soient intégrées aux pratiques sociales et que les exigences de justice soient ainsi remplies. - The emergence of assisted reproductive technologies (ART) came along with several discourses. On the one hand a discourse promising an extension of the individuals' reproductive choices, their procreative liberty and autonomy. On the other hand a discourse announced a series of disasters to come such as the collapse of the family institution and the modification of human kind. In other words, a growing tension appears between promises and disasters and contemporary societies are facing inevitable social, political and ethical challenges, in particular with regard to the issue of ART regulation: who has access? What procedures should be authorized? Which ones should be limited? These complex questions have no simple or obvious answers. The variety of legislative responses to these questions highlights complexity. Ethics can play a fundamental role, and without claiming to give simple answers, also offer a space for reflection as well as the privilege to distance itself with regard to contemporary issues. It is in this perspective that this study questions the ethical considerations of ART in a perspective of justice. However, in previous studies in bioethics mainly following a liberal tradition, previously mentioned tension has lead bioethics to justify some inequalities instead of trying to overcome them. As a consequence, evaluating practices of ART from a perspective of justice requires to first reevaluate the concept of justice itself. In doing so we offer a conception of justice founded on the anthropology of vulnerability. This conception draws on an articulation of the ethic of care of Joan Tronto and the capability approach of Martha Nussbaum, which places vulnerability at the center of the person. This conception allows us to identify, within the framework of ARTS in Switzerland and starting with the laws of medically assisted procreation (LPMA), some normative constructions. These constructions lead to the non-recognition and the disregard of some forms of vulnerability: a generic vulnerability as well as socio-economic counterpart. Focusing mainly on the issue of generic vulnerability, our analysis has implications for the conceptions of family, the best interests of the child, woman, and nature in the way they are defined in a naturalized conception of ART. Responding to such failures by taking into account these vulnerabilities thus means to move these conceptions in order for vulnerabilities to be integrated in social practices and requirements for justice to be fulfilled.
Resumo:
BACKGROUND: Suction-based wound healing devices with open-pore foam interfaces are widely used to treat complex tissue defects. The impact of changes in physicochemical parameters of the wound interfaces has not been investigated. METHODS: Full-thickness wounds in diabetic mice were treated with occlusive dressing or a suction device with a polyurethane foam interface varying in mean pore size diameter. Wound surface deformation on day 2 was measured on fixed tissues. Histologic cross-sections were analyzed for granulation tissue thickness (hematoxylin and eosin), myofibroblast density (α-smooth muscle actin), blood vessel density (platelet endothelial cell adhesion molecule-1), and cell proliferation (Ki67) on day 7. RESULTS: Polyurethane foam-induced wound surface deformation increased with polyurethane foam pore diameter: 15 percent (small pore size), 60 percent (medium pore size), and 150 percent (large pore size). The extent of wound strain correlated with granulation tissue thickness that increased 1.7-fold in small pore size foam-treated wounds, 2.5-fold in medium pore size foam-treated wounds, and 4.9-fold in large pore size foam-treated wounds (p < 0.05) compared with wounds treated with an occlusive dressing. All polyurethane foams increased the number of myofibroblasts over occlusive dressing, with maximal presence in large pore size foam-treated wounds compared with all other groups (p < 0.05). CONCLUSIONS: The pore size of the interface material of suction devices has a significant impact on the wound healing response. Larger pores increased wound surface strain, tissue growth, and transformation of contractile cells. Modification of the pore size is a powerful approach for meeting biological needs of specific wounds.
Resumo:
Targeted mutagenesis directed by oligonucleotides (ONs) is a promising method for manipulating the genome in higher eukaryotes. In this study, we have compared gene editing by different ONs on two new target sequences, the eBFP and the rd1 mutant photoreceptor betaPDE cDNAs, which were integrated as single copy transgenes at the same genomic site in 293T cells. Interestingly, antisense ONs were superior to sense ONs for one target only, showing that target sequence can by itself impart strand-bias in gene editing. The most efficient ONs were short 25 nt ONs with flanking locked nucleic acids (LNAs), a chemistry that had only been tested for targeted nucleotide mutagenesis in yeast, and 25 nt ONs with phosphorothioate linkages. We showed that LNA-modified ONs mediate dose-dependent target modification and analyzed the importance of LNA position and content. Importantly, when using ONs with flanking LNAs, targeted gene modification was stably transmitted during cell division, which allowed reliable cloning of modified cells, a feature essential for further applications in functional genomics and gene therapy. Finally, we showed that ONs with flanking LNAs aimed at correcting the rd1 stop mutation could promote survival of photoreceptors in retinas of rd1 mutant mice, suggesting that they are also active in vivo.
Resumo:
Computer simulations on a new model of the alpha1b-adrenergic receptor based on the crystal structure of rhodopsin have been combined with experimental mutagenesis to investigate the role of residues in the cytosolic half of helix 6 in receptor activation. Our results support the hypothesis that a salt bridge between the highly conserved arginine (R143(3.50)) of the E/DRY motif of helix 3 and a conserved glutamate (E289(6.30)) on helix 6 constrains the alpha1b-AR in the inactive state. In fact, mutations of E289(6.30) that weakened the R143(3.50)-E289(6.30) interaction constitutively activated the receptor. The functional effect of mutating other amino acids on helix 6 (F286(6.27), A292(6.33), L296(6.37), V299(6.40,) V300(6.41), and F303(6.44)) correlates with the extent of their interaction with helix 3 and in particular with R143(3.50) of the E/DRY sequence.
Resumo:
BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.
Resumo:
Les troubles dissociatifs se présentent souvent par une clinique neurologique atypique impliquant une démarche diagnostique complexe à l'interface de la neurologie et de la psychiatrie. La restitution du diagnostic aux patients et leur prise en charge nécessitent une étroite collaboration interdisciplinaire. Les connaissances actuelles sont encore limitées, mais ce domaine est enrichi par des études récentes en neurosciences cliniques. Cet article présente les principaux aspects des troubles dissociatifs et formule un concept de prise en charge. Dissociative disorders often have an atypical neurological presentation requiring a complex diagnostic process at the interface between neurology and psychiatry. A strong interdisciplinary collaboration is needed for diagnosis restitution and patient treatment. Current knowledge is still scarce but recent studies in clinical neuroscience enrich this field. This article presents the main aspects of dissociative disorders and suggests a treatment framework
Resumo:
Le but de la consultation systémique est l'évaluation des interactions familiales à des fins cliniques aussi bien qu'à des fins de recherche, avec mise en lumière des ressources aussi bien que des difficultés de la famille. Elle est soit demandée spontanément par les parents soit par le(s) thérapeute(s) qui sui(ven)t la famille. Lors d'une première rencontre, nous proposons d'une part à la famille de faire des jeux familiaux standardisés que nous filmons et d'autre part de poser les questions qui motivent les parents ou thérapeute(s) à nous consulter. Lors d'une deuxième rencontre, un visionnement des films avec la famille (et les thérapeutes) permet une discussion ainsi que l'élaboration de réponses aux questions posées. Après une description de la pratique de la consultation systémique, avec ses objectifs et ses principes, les situations utilisées dans ce contexte sont présentées (comme le Lausanne Trilogue Play). Enfin, une vignette clinique en illustre la richesse et l'utilité, aussi bien pour la recherche que pour la clinique. The aim of the systems consultation is to assess the family interaction in order to enlighten, in a clinical perspective, the resources as well as the difficulties of the family. The family itself or a therapist may request it. During the first session, we propose to the family, on the one hand, to play standardized games which are recorded and, on the other hand, to ask the questions they (or the therapist/s) may have. During the second session, a video feedback takes place to discuss and elaborate on the questions. After a description of the practice of the systems consultation, including aims and principles, the observational situations used in this context will be presented (e.g. the Lausanne Trilogue Play). Finally a case illustration will show its richness and usefulness for research as well as for clinical purposes, in particular as a bridge between research and clinical domains.
Resumo:
Neurofilament (NF) proteins consist of three subunits of different molecular weights defined as NF-H, NF-M, and NF-L. They are typical structures of the neuronal cytoskeleton. Their immunocytochemical distribution during postnatal development of cat cerebellum was studied with several monoclonal and polyclonal antibodies against phosphorylated or unmodified sites. Expression and distribution of the triplet neurofilament proteins changed with maturation. Afferent mossy and climbing fibers in the medullary layer contained NF-M and NF-L already at birth, whereas NF-H appeared later. Within the first three postnatal weeks, all three subunits appeared in mossy and climbing fibers in the internal granular and molecular layers and in the axons of Purkinje cells. Axons of local circuit neurons such as basket cells expressed these proteins at the end of the first month, whereas parallel fibers expressed them last, at the beginning of the third postnatal month. Differential localization was especially observed for NF-H. Depending on phosphorylation, NF-H proteins were found in different axon types in climbing, mossy, and basket fibers or additionally in parallel fibers. A nonphosphorylated NF-H subunit was exclusively located in some Purkinje cells at early developmental stages and in some smaller interneurons later. A novel finding is the presence of a phosphorylation site in the NF-H subunit that is localized in dendrites of Purkinje cells but not in axons. Expression and phosphorylation of the NF-H subunit, especially, is cell-type specific and possibly involved in the adult-type stabilization of the axonal and dendritic cytoskeleton.
Resumo:
In otherwise successful gene therapy trials for the treatment of SCID patients and others, insertional mutagenesis has resulted in leukemia development. Besides the integration of vectors that including strong enhancers, more recently, SIN-vectors have been shown to partially retain oncogenic potential. The identification of genetic elements which would both prevent such activation effects and shield the transgene from silencing, is a main challenge. Previous attempts met with difficulties in producing the vectors and poor efficacy of the insulators (GIE). The improvement of integrating vectors safety has been investigated using new candidate synthetic GIEs. The latter have been introduced in retroviral and lentiviral vectors. Native LTRs, SIN-LTRs, and SIN-insulated constructs have been designed and compared, using two sets of internal promoter, i.e. strong and housekeeping. We could establish that a specific insulator translates at best into functional activity and boundary effect in both vector types. We could also determine that other genetic elements are key determinants in order to achieve accurate expression and viral titre, from these insulated vectors. A dramatic shift in the expression profile is observed in target cells, with a homogenous pattern including data on both cell-lines and primary HSCs from cord blood. The assessment of potential genotoxicity will be presented, based on the comparison of the integration patterns ingenuity in human target cells sampled over a three months period with both reference LTRs and SIN versus test insulated vectors, using high-throughput pyro-sequencing.
Resumo:
BACKGROUND: In our hands, in vivo segmental vessel length changes up to 5% because of blood pressure: increasing in arterial pressure is associated to decrease in segmental vessel length. METHODS AND MATERIAL: Using two piezoelectric crystals sutured on vessel wall and a high fidelity pressure probe, we recorded artery length variations as function of blood pressure, before and after an end-to-end anastomosis on four pigs carotid arteries. RESULTS: Mean arterial pressure before anastomosis = 73 mmHg (+/- 12); mean arterial pressure after anastomosis = 91 mmHg (+/- 14); mean crystals displacement before anastomosis during systole = -0.21 mm; mean crystals displacement after anastomosis during systole = +0.24 mm; mean distance between crystals before anastomosis = 12.3 mm (+/- 0.8) and after anastomosis = 11.2 mm (+/- 0.5). CONCLUSIONS: In the acute phase following an end-to-end anastomosis, an increase in blood pressure causes increasing in vessel length, with an exponential correlation. The anastomosis is constantly subjected to a longitudinal traction whose magnitude depends on blood pressure.
Resumo:
Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.