56 resultados para Instrumentation and orchestration
em Université de Lausanne, Switzerland
Resumo:
The activity of radiopharmaceuticals in nuclear medicine is measured before patient injection with radionuclide calibrators. In Switzerland, the general requirements for quality controls are defined in a federal ordinance and a directive of the Federal Office of Metrology (METAS) which require each instrument to be verified. A set of three gamma sources (Co-57, Cs-137 and Co-60) is used to verify the response of radionuclide calibrators in the gamma energy range of their use. A beta source, a mixture of (90)Sr and (90)Y in secular equilibrium, is used as well. Manufacturers are responsible for the calibration factors. The main goal of the study was to monitor the validity of the calibration factors by using two sources: a (90)Sr/(90)Y source and a (18)F source. The three types of commercial radionuclide calibrators tested do not have a calibration factor for the mixture but only for (90)Y. Activity measurements of a (90)Sr/(90)Y source with the (90)Y calibration factor are performed in order to correct for the extra-contribution of (90)Sr. The value of the correction factor was found to be 1.113 whereas Monte Carlo simulations of the radionuclide calibrators estimate the correction factor to be 1.117. Measurements with (18)F sources in a specific geometry are also performed. Since this radionuclide is widely used in Swiss hospitals equipped with PET and PET-CT, the metrology of the (18)F is very important. The (18)F response normalized to the (137)Cs response shows that the difference with a reference value does not exceed 3% for the three types of radionuclide calibrators.
Resumo:
The basal sliding surfaces in large rockslides are often composed of several surfaces and possess a complex geometry. The exact morphology and location in three dimensions of the sliding surface remains generally unknown, in spite of extensive field and subsurface investigations, such as those at the Åknes rockslide (western Norway). This knowledge is crucial for volume estimations, failure mechanisms, and numerical slope stability modeling. This paper focuses on the geomorphologic characterization of the basal sliding surface of a postglacial rockslide scar in the vicinity of Åknes. This scar displays a stepped basal sliding surface formed by dip slopes of the gneiss foliation linked together by steeply dipping fractures. A detailed characterization of the rockslide scar by means of high-resolution digital elevation models permits statistical parameters of dip angle, spacing, persistence, and roughness of foliation surfaces and step fractures to be obtained. The characteristics are used for stochastic simulations of stepped basal sliding surfaces at the Åknes rockslide. These findings are compared with previous models based on geophysical investigations. This study discusses the investigation of rockslide scars and rock outcrops for a better understanding of potential rockslides. This work identifies possible basal sliding surface locations, which is a valuable input for volume estimates, design and location of monitoring instrumentation, and numerical slope stability modeling.
Resumo:
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays
Resumo:
Study design: A retrospective study of image guided cervical implant placement precision. Objective: To describe a simple and precise classification of cervical critical screw placement. Summary of Background Data: "Critical" screw placement is defined as implant insertion into a bone corridor which is surrounded circumferentially by neurovascular structures. While the use of image guidance has improved accuracy, there is currently no classification which provides sufficient precision to assess the navigation success of critical cervical screw placement. Methods: Based on postoperative clinical evaluation and CT imaging, the orthogonal view evaluation method (OVEM) is used to classify screw accuracy into grade I (no cortical breach), grade la (screw thread cortical breach), grade II (internal diameter cortical breach) and grade III (major cortical breach causing neural or vascular injury). Grades II and III are considered to be navigation failures, after accounting for bone corridor / screw mismatch (minimal diameter of targeted bone corridor being smaller than an outer screw diameter). Results: A total of 276 screws from 91 patients were classified into grade I (64.9%), grade la (18.1%), and grade II (17.0%). No grade III screw was observed. The overall rate of navigation failure was 13%. Multiple logistic regression indicated that navigational failure was significantly associated with the level of instrumentation and the navigation system used. Navigational failure was rare (1.6%) when the margin around the screw in the bone corridor was larger than 1.5 mm. Conclusions: OVEM evaluation appears to be a useful tool to assess the precision of critical screw placement in the cervical spine. The OVEM validity and reliability need to be addressed. Further correlation with clinical outcomes will be addressed in future studies.
Resumo:
Ligament balance is an important and subjective task performed during total knee arthroplasty (TKA) procedure. For this reason, it is desirable to develop instruments to quantitatively assess the soft-tissue balance since excessive imbalance can accelerate prosthesis wear and lead to early surgical revision. The instrumented distractor proposed in this study can assist surgeons on performing ligament balance by measuring the distraction gap and applied load. Also the device allows the determination of the ligament stiffness which can contribute a better understanding of the intrinsic mechanical behavior of the knee joint. Instrumentation of the device involved the use of hall-sensors for measuring the distractor displacement and strain gauges to transduce the force. The sensors were calibrated and tested to demonstrate their suitability for surgical use. Results show the distraction gap can be measured reliably with 0.1mm accuracy and the distractive loads could be assessed with an accuracy in the range of 4N. These characteristics are consistent with those have been proposed, in this work, for a device that could assist on performing ligament balance while permitting surgeons evaluation based on his experience. Preliminary results from in vitro tests were in accordance with expected stiffness values for medial collateral ligament (MCL) and lateral collateral ligament (LCL).
Resumo:
Intraoperative imaging, in particular intraoperative MRI, is a developing area in neurosurgery and its role is currently being evaluated. Its role in epilepsy surgery has not been defined yet and its use has been limited. In our experience with a compact and mobile low-field intraoperative MRI system, a few epilepsy surgeries have been performed using this technique. As the integration of imaging and functional data plays an important role in the planning of epilepsy surgery, intraoperative verification of the surgical result may be highly valuable. Therefore, teams that have access to intraoperative MRI should be encouraged to use this technique prospectively to evaluate its current relevance in epilepsy surgery.
Resumo:
We report a case of acute fracture of both sesamoids of the great toe in an athlete. The fractures healed uneventfully after non-surgical treatment.
Resumo:
Quantitative ultrasound (QUS) appears to be developing into an acceptable, low-cost and readily-accessible alternative to dual X-ray absorptiometry (DXA) measurements of bone mineral density (BMD) in the detection and management of osteoporosis. Perhaps the major difficulty with their widespread use is that many different QUS devices exist that differ substantially from each other, in terms of the parameters they measure and the strength of empirical evidence supporting their use. But another problem is that virtually no data exist outside of Caucasian or Asian populations. In general, heel QUS appears to be most tested and most effective. Some, but not all heel QUS devices are effective assessing fracture risk in some, but not all populations, the evidence being strongest for Caucasian females > 55 years old, though some evidence exists for Asian females > 55 and for Caucasian and Asian males > 70. Certain devices may allow to estimate the likelihood of osteoporosis, but very limited evidence exists supporting QUS use during the initiation or monitoring of osteoporosis treatment. Likely, QUS is most effective when combined with an assessment of clinical risk factors (CRF); with DXA reserved for individuals who are not identified as either high or low risk using QUS and CRF. However, monitoring and maintenance of test and instrument accuracy, precision and reproducibility are essential if QUS devices are to be used in clinical practice; and further scientific research in non-Caucasian, non-Asian populations clearly is compulsory to validate this tool for more widespread use.
Resumo:
This article presents a feasibility study with the objective of investigating the potential of multi-detector computed tomography (MDCT) to estimate the bone age and sex of deceased persons. To obtain virtual skeletons, the bodies of 22 deceased persons with known age at death were scanned by MDCT using a special protocol that consisted of high-resolution imaging of the skull, shoulder girdle (including the upper half of the humeri), the symphysis pubis and the upper halves of the femora. Bone and soft-tissue reconstructions were performed in two and three dimensions. The resulting data were investigated by three anthropologists with different professional experience. Sex was determined by investigating three-dimensional models of the skull and pelvis. As a basic orientation for the age estimation, the complex method according to Nemeskéri and co-workers was applied. The final estimation was effected using additional parameters like the state of dentition, degeneration of the spine, etc., which where chosen individually by the three observers according to their experience. The results of the study show that the estimation of sex and age is possible by the use of MDCT. Virtual skeletons present an ideal collection for anthropological studies, because they are obtained in a non-invasive way and can be investigated ad infinitum.
Resumo:
BACKGROUND: Different kinds of ventilators are available to perform noninvasive ventilation (NIV) in ICUs. Which type allows the best patient-ventilator synchrony is unknown. The objective was to compare patient-ventilator synchrony during NIV between ICU, transport-both with and without the NIV algorithm engaged-and dedicated NIV ventilators. METHODS: First, a bench model simulating spontaneous breathing efforts was used to assess the respective impact of inspiratory and expiratory leaks on cycling and triggering functions in 19 ventilators. Second, a clinical study evaluated the incidence of patient-ventilator asynchronies in 15 patients during three randomized, consecutive, 20-min periods of NIV using an ICU ventilator with and without its NIV algorithm engaged and a dedicated NIV ventilator. Patient-ventilator asynchrony was assessed using flow, airway pressure, and respiratory muscles surface electromyogram recordings. RESULTS: On the bench, frequent auto-triggering and delayed cycling occurred in the presence of leaks using ICU and transport ventilators. NIV algorithms unevenly minimized these asynchronies, whereas no asynchrony was observed with the dedicated NIV ventilators in all except one. These results were reproduced during the clinical study: The asynchrony index was significantly lower with a dedicated NIV ventilator than with ICU ventilators without or with their NIV algorithm engaged (0.5% [0.4%-1.2%] vs 3.7% [1.4%-10.3%] and 2.0% [1.5%-6.6%], P < .01), especially because of less auto-triggering. CONCLUSIONS: Dedicated NIV ventilators allow better patient-ventilator synchrony than ICU and transport ventilators, even with their NIV algorithm. However, the NIV algorithm improves, at least slightly and with a wide variation among ventilators, triggering and/or cycling off synchronization.
Resumo:
There has been a long debate since the introduction of blood analysis prior to major sports events, to find out whether blood samples should be analysed right away on the site of competition or whether they should be transported and analysed in an anti-doping laboratory. Therefore, it was necessary to measure blood samples and compare the results obtained right after the blood withdrawal with those obtained after a few hours delay. Furthermore, it was interesting to determine the effect of temperature on the possible deterioration of red blood cell analytes used for testing recombinant erythropoietin abuse. Healthy volunteers were asked to give two blood samples and one of these was kept at room temperature whereas the second one was put into a refrigerator. On a regular basis, the samples were rolled for homogenisation and temperature stabilisation and were analysed with the same haematological apparatus. The results confirmed that blood controls prior to competition should be performed as soon as possible with standardised pre-analytical conditions to avoid too many variations notably on the haematocrit and the reticulocyte count. These recommendations should ideally also be applied to the all the blood controls compulsory for the medical follow up, otherwise unexplainable values could be misinterpreted and could for instance lead to a period of incapacity.
Resumo:
The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25-32%, 32-39%, and 40-44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior-anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.