24 resultados para Information Retrieval, Weblogs, Decision Support

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the current state and development of a prototype web-GIS (Geographic Information System) decision support platform intended for application in natural hazards and risk management, mainly for floods and landslides. This web platform uses open-source geospatial software and technologies, particularly the Boundless (formerly OpenGeo) framework and its client side software development kit (SDK). The main purpose of the platform is to assist the experts and stakeholders in the decision-making process for evaluation and selection of different risk management strategies through an interactive participation approach, integrating web-GIS interface with decision support tool based on a compromise programming approach. The access rights and functionality of the platform are varied depending on the roles and responsibilities of stakeholders in managing the risk. The application of the prototype platform is demonstrated based on an example case study site: Malborghetto Valbruna municipality of North-Eastern Italy where flash floods and landslides are frequent with major events having occurred in 2003. The preliminary feedback collected from the stakeholders in the region is discussed to understand the perspectives of stakeholders on the proposed prototype platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug delivery is one of the most common clinical routines in hospitals, and is critical to patients' health and recovery. It includes a decision making process in which a medical doctor decides the amount (dose) and frequency (dose interval) on the basis of a set of available patients' feature data and the doctor's clinical experience (a priori adaptation). This process can be computerized in order to make the prescription procedure in a fast, objective, inexpensive, non-invasive and accurate way. This paper proposes a Drug Administration Decision Support System (DADSS) to help clinicians/patients with the initial dose computing. The system is based on a Support Vector Machine (SVM) algorithm for estimation of the potential drug concentration in the blood of a patient, from which a best combination of dose and dose interval is selected at the level of a DSS. The addition of the RANdom SAmple Consensus (RANSAC) technique enhances the prediction accuracy by selecting inliers for SVM modeling. Experiments are performed for the drug imatinib case study which shows more than 40% improvement in the prediction accuracy compared with previous works. An important extension to the patient features' data is also proposed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RÉSUMÉ Contexte : Peu d'études ont examiné la façon dont les médecins appréhendent les guidelines, et encore moins celle dont ils perçoivent de tels guidelines disponibles sur Internet. Cette étude évalue l'acceptation par les médecins d'un guideline électronique portant sur l'adéquation de la colonoscopie. Méthode : Des gastroentérologues participant à une étude observationnelle internationale ont consulté un guideline électronique pour une série consécutive de patients adressés pour une colonoscopie. Le guideline a été élaboré par le Panel Européen sur l'Adéquation de l'Endoscopie Gastro-intestinale (EPAGE en version anglaise), utilisant une méthode validée (RAND). Les opinions des médecins sur le guideline, sur le site Internet et sur les perspectives d'utilisation ont été recueillies au moyen de questionnaires. Résultats : 289 patients ont été inclus dans l'étude. Le temps moyen pour consulter le site Internet a été de 1.8 min et 86% des médecins l'ont considéré comme simple à utiliser. Les recommandations ont été facilement localisées pour 82% des patients et les médecins étaient d'accord avec l'adéquation de la colonoscopie dans 86% des cas. Selon les critères EPAGE, la colonoscopie était appropriée, incertaine et inappropriée, respectivement chez 59, 28 et 13% des patients. Conclusions : Le guideline EPAGE a été considéré comme acceptable et simple à utiliser. L'utilisation, l'utilité et la pertinence du site Internet a été jugée comme acceptable. Son utilisation effective dépendra cependant de la levée de certains obstacles au niveau organisationnel et culturel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Preventing drug incompatibilities has a high impact onthe safety of drug therapy. Although there are no internationalguidelines to manage drug incompatibilities, different decision-supporttools such as handbooks, cross-tables and databases are available.In a previous study, two decision-support tools have been pre-selectedby pharmacists as fitting nurses' needs on the wards1. The objective ofthis study was to have these both tools evaluated by nurses todetermine which would be the most suitable for their daily practice.Materials & Methods Evaluated tools were:1. Cross-table of drug pairs (http://files.chuv.ch/internet-docs/pha/medicaments/pha_phatab_compatibilitessip.pdf)2. Colour-table (a colour for each drug according to the pH: red =acid; blue = basic; yellow = neutral; black = to be infused alone)2Tools were assessed by 48 nurses in 5 units (PICU, adult andgeriatric intensive care, surgery, onco-hematology) using a standardizedform1. The scientific accuracy of the tools was evaluated bydetermining the compatibility of five drugs pairs (rate of correctanswers according to the Trissel's Handbook on Injectable Drugs,chi-square test). Their ergonomics, design, reliability and applicabilitywere estimated using visual analogue scales (VAS 0-10; 0 =null, 10 = excellent). Results are expressed as the median and interquartilerange (IQR) for 25% and 75% (Wilcoxon rank sum test).Results The rate of correct answers was above 90% for both tools(cross-table 96.2% vs colour-table 92.5%, p[0.05).The ergonomics and the applicability were higher for the crosstable[7.1 (IQR25 4.0, IQR75 8.0) vs 5.0 (IQR25 2.7, IQR75 7.0), p =0.025 resp. 8.3 (IQR25 7.4, IQR75 9.2) vs 7.6 (IQR25 5.9, IQR75 8.8)p = 0.047].The design of the colour-table was judged better [4.6 (IQR25 2.9,IQR75 7.1) vs 7.1 (IQR25 5.4, IQR75 8.4) p = 0.002].No difference was observed in terms of reliability [7.3 (IQR25 6.5,IQR75 8.4) vs 6.7 (IQR25 5.0, IQR758.6) p[0.05].The cross-table was globally preferred by 65% of the nurses (27%colour-table, 8% undetermined) and 68% would like to have thisdecision-support tool available for their daily practice.Discussion & Conclusion Both tools showed the same accuracy toassess drug compatibility. In terms of ergonomics and applicabilitythe cross-table was better than the colour-table, and was preferred bythe nurses for their daily practice. The cross-table will be implementedin our hospital as decision-support tool to help nurses tomanage drug incompatibilities.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 6 STRUCTURE OF THIS THESIS -Chapter I presents the motivations of this dissertation by illustrating two gaps in the current body of knowledge that are worth filling, describes the research problem addressed by this thesis and presents the research methodology used to achieve this goal. -Chapter 2 shows a review of the existing literature showing that environment analysis is a vital strategic task, that it shall be supported by adapted information systems, and that there is thus a need for developing a conceptual model of the environment that provides a reference framework for better integrating the various existing methods and a more formal definition of the various aspect to support the development of suitable tools. -Chapter 3 proposes a conceptual model that specifies the various enviromnental aspects that are relevant for strategic decision making, how they relate to each other, and ,defines them in a more formal way that is more suited for information systems development. -Chapter 4 is dedicated to the evaluation of the proposed model on the basis of its application to a concrete environment to evaluate its suitability to describe the current conditions and potential evolution of a real environment and get an idea of its usefulness. -Chapter 5 goes a step further by assembling a toolbox describing a set of methods that can be used to analyze the various environmental aspects put forward by the model and by providing more detailed specifications for a number of them to show how our model can be used to facilitate their implementation as software tools. -Chapter 6 describes a prototype of a strategic decision support tool that allow the analysis of some of the aspects of the environment that are not well supported by existing tools and namely to analyze the relationship between multiple actors and issues. The usefulness of this prototype is evaluated on the basis of its application to a concrete environment. -Chapter 7 finally concludes this thesis by making a summary of its various contributions and by proposing further interesting research directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYSpecies distribution models (SDMs) represent nowadays an essential tool in the research fields of ecology and conservation biology. By combining observations of species occurrence or abundance with information on the environmental characteristic of the observation sites, they can provide information on the ecology of species, predict their distributions across the landscape or extrapolate them to other spatial or time frames. The advent of SDMs, supported by geographic information systems (GIS), new developments in statistical models and constantly increasing computational capacities, has revolutionized the way ecologists can comprehend species distributions in their environment. SDMs have brought the tool that allows describing species realized niches across a multivariate environmental space and predict their spatial distribution. Predictions, in the form of probabilistic maps showing the potential distribution of the species, are an irreplaceable mean to inform every single unit of a territory about its biodiversity potential. SDMs and the corresponding spatial predictions can be used to plan conservation actions for particular species, to design field surveys, to assess the risks related to the spread of invasive species, to select reserve locations and design reserve networks, and ultimately, to forecast distributional changes according to scenarios of climate and/or land use change.By assessing the effect of several factors on model performance and on the accuracy of spatial predictions, this thesis aims at improving techniques and data available for distribution modelling and at providing the best possible information to conservation managers to support their decisions and action plans for the conservation of biodiversity in Switzerland and beyond. Several monitoring programs have been put in place from the national to the global scale, and different sources of data now exist and start to be available to researchers who want to model species distribution. However, because of the lack of means, data are often not gathered at an appropriate resolution, are sampled only over limited areas, are not spatially explicit or do not provide a sound biological information. A typical example of this is data on 'habitat' (sensu biota). Even though this is essential information for an effective conservation planning, it often has to be approximated from land use, the closest available information. Moreover, data are often not sampled according to an established sampling design, which can lead to biased samples and consequently to spurious modelling results. Understanding the sources of variability linked to the different phases of the modelling process and their importance is crucial in order to evaluate the final distribution maps that are to be used for conservation purposes.The research presented in this thesis was essentially conducted within the framework of the Landspot Project, a project supported by the Swiss National Science Foundation. The main goal of the project was to assess the possible contribution of pre-modelled 'habitat' units to model the distribution of animal species, in particular butterfly species, across Switzerland. While pursuing this goal, different aspects of data quality, sampling design and modelling process were addressed and improved, and implications for conservation discussed. The main 'habitat' units considered in this thesis are grassland and forest communities of natural and anthropogenic origin as defined in the typology of habitats for Switzerland. These communities are mainly defined at the phytosociological level of the alliance. For the time being, no comprehensive map of such communities is available at the national scale and at fine resolution. As a first step, it was therefore necessary to create distribution models and maps for these communities across Switzerland and thus to gather and collect the necessary data. In order to reach this first objective, several new developments were necessary such as the definition of expert models, the classification of the Swiss territory in environmental domains, the design of an environmentally stratified sampling of the target vegetation units across Switzerland, the development of a database integrating a decision-support system assisting in the classification of the relevés, and the downscaling of the land use/cover data from 100 m to 25 m resolution.The main contributions of this thesis to the discipline of species distribution modelling (SDM) are assembled in four main scientific papers. In the first, published in Journal of Riogeography different issues related to the modelling process itself are investigated. First is assessed the effect of five different stepwise selection methods on model performance, stability and parsimony, using data of the forest inventory of State of Vaud. In the same paper are also assessed: the effect of weighting absences to ensure a prevalence of 0.5 prior to model calibration; the effect of limiting absences beyond the environmental envelope defined by presences; four different methods for incorporating spatial autocorrelation; and finally, the effect of integrating predictor interactions. Results allowed to specifically enhance the GRASP tool (Generalized Regression Analysis and Spatial Predictions) that now incorporates new selection methods and the possibility of dealing with interactions among predictors as well as spatial autocorrelation. The contribution of different sources of remotely sensed information to species distribution models was also assessed. The second paper (to be submitted) explores the combined effects of sample size and data post-stratification on the accuracy of models using data on grassland distribution across Switzerland collected within the framework of the Landspot project and supplemented with other important vegetation databases. For the stratification of the data, different spatial frameworks were compared. In particular, environmental stratification by Swiss Environmental Domains was compared to geographical stratification either by biogeographic regions or political states (cantons). The third paper (to be submitted) assesses the contribution of pre- modelled vegetation communities to the modelling of fauna. It is a two-steps approach that combines the disciplines of community ecology and spatial ecology and integrates their corresponding concepts of habitat. First are modelled vegetation communities per se and then these 'habitat' units are used in order to model animal species habitat. A case study is presented with grassland communities and butterfly species. Different ways of integrating vegetation information in the models of butterfly distribution were also evaluated. Finally, a glimpse to climate change is given in the fourth paper, recently published in Ecological Modelling. This paper proposes a conceptual framework for analysing range shifts, namely a catalogue of the possible patterns of change in the distribution of a species along elevational or other environmental gradients and an improved quantitative methodology to identify and objectively describe these patterns. The methodology was developed using data from the Swiss national common breeding bird survey and the article presents results concerning the observed shifts in the elevational distribution of breeding birds in Switzerland.The overall objective of this thesis is to improve species distribution models as potential inputs for different conservation tools (e.g. red lists, ecological networks, risk assessment of the spread of invasive species, vulnerability assessment in the context of climate change). While no conservation issues or tools are directly tested in this thesis, the importance of the proposed improvements made in species distribution modelling is discussed in the context of the selection of reserve networks.RESUMELes modèles de distribution d'espèces (SDMs) représentent aujourd'hui un outil essentiel dans les domaines de recherche de l'écologie et de la biologie de la conservation. En combinant les observations de la présence des espèces ou de leur abondance avec des informations sur les caractéristiques environnementales des sites d'observation, ces modèles peuvent fournir des informations sur l'écologie des espèces, prédire leur distribution à travers le paysage ou l'extrapoler dans l'espace et le temps. Le déploiement des SDMs, soutenu par les systèmes d'information géographique (SIG), les nouveaux développements dans les modèles statistiques, ainsi que la constante augmentation des capacités de calcul, a révolutionné la façon dont les écologistes peuvent comprendre la distribution des espèces dans leur environnement. Les SDMs ont apporté l'outil qui permet de décrire la niche réalisée des espèces dans un espace environnemental multivarié et prédire leur distribution spatiale. Les prédictions, sous forme de carte probabilistes montrant la distribution potentielle de l'espèce, sont un moyen irremplaçable d'informer chaque unité du territoire de sa biodiversité potentielle. Les SDMs et les prédictions spatiales correspondantes peuvent être utilisés pour planifier des mesures de conservation pour des espèces particulières, pour concevoir des plans d'échantillonnage, pour évaluer les risques liés à la propagation d'espèces envahissantes, pour choisir l'emplacement de réserves et les mettre en réseau, et finalement, pour prévoir les changements de répartition en fonction de scénarios de changement climatique et/ou d'utilisation du sol. En évaluant l'effet de plusieurs facteurs sur la performance des modèles et sur la précision des prédictions spatiales, cette thèse vise à améliorer les techniques et les données disponibles pour la modélisation de la distribution des espèces et à fournir la meilleure information possible aux gestionnaires pour appuyer leurs décisions et leurs plans d'action pour la conservation de la biodiversité en Suisse et au-delà. Plusieurs programmes de surveillance ont été mis en place de l'échelle nationale à l'échelle globale, et différentes sources de données sont désormais disponibles pour les chercheurs qui veulent modéliser la distribution des espèces. Toutefois, en raison du manque de moyens, les données sont souvent collectées à une résolution inappropriée, sont échantillonnées sur des zones limitées, ne sont pas spatialement explicites ou ne fournissent pas une information écologique suffisante. Un exemple typique est fourni par les données sur 'l'habitat' (sensu biota). Même s'il s'agit d'une information essentielle pour des mesures de conservation efficaces, elle est souvent approximée par l'utilisation du sol, l'information qui s'en approche le plus. En outre, les données ne sont souvent pas échantillonnées selon un plan d'échantillonnage établi, ce qui biaise les échantillons et par conséquent les résultats de la modélisation. Comprendre les sources de variabilité liées aux différentes phases du processus de modélisation s'avère crucial afin d'évaluer l'utilisation des cartes de distribution prédites à des fins de conservation.La recherche présentée dans cette thèse a été essentiellement menée dans le cadre du projet Landspot, un projet soutenu par le Fond National Suisse pour la Recherche. L'objectif principal de ce projet était d'évaluer la contribution d'unités 'd'habitat' pré-modélisées pour modéliser la répartition des espèces animales, notamment de papillons, à travers la Suisse. Tout en poursuivant cet objectif, différents aspects touchant à la qualité des données, au plan d'échantillonnage et au processus de modélisation sont abordés et améliorés, et leurs implications pour la conservation des espèces discutées. Les principaux 'habitats' considérés dans cette thèse sont des communautés de prairie et de forêt d'origine naturelle et anthropique telles que définies dans la typologie des habitats de Suisse. Ces communautés sont principalement définies au niveau phytosociologique de l'alliance. Pour l'instant aucune carte de la distribution de ces communautés n'est disponible à l'échelle nationale et à résolution fine. Dans un premier temps, il a donc été nécessaire de créer des modèles de distribution de ces communautés à travers la Suisse et par conséquent de recueillir les données nécessaires. Afin d'atteindre ce premier objectif, plusieurs nouveaux développements ont été nécessaires, tels que la définition de modèles experts, la classification du territoire suisse en domaines environnementaux, la conception d'un échantillonnage environnementalement stratifié des unités de végétation cibles dans toute la Suisse, la création d'une base de données intégrant un système d'aide à la décision pour la classification des relevés, et le « downscaling » des données de couverture du sol de 100 m à 25 m de résolution. Les principales contributions de cette thèse à la discipline de la modélisation de la distribution d'espèces (SDM) sont rassemblées dans quatre articles scientifiques. Dans le premier article, publié dans le Journal of Biogeography, différentes questions liées au processus de modélisation sont étudiées en utilisant les données de l'inventaire forestier de l'Etat de Vaud. Tout d'abord sont évalués les effets de cinq méthodes de sélection pas-à-pas sur la performance, la stabilité et la parcimonie des modèles. Dans le même article sont également évalués: l'effet de la pondération des absences afin d'assurer une prévalence de 0.5 lors de la calibration du modèle; l'effet de limiter les absences au-delà de l'enveloppe définie par les présences; quatre méthodes différentes pour l'intégration de l'autocorrélation spatiale; et enfin, l'effet de l'intégration d'interactions entre facteurs. Les résultats présentés dans cet article ont permis d'améliorer l'outil GRASP qui intègre désonnais de nouvelles méthodes de sélection et la possibilité de traiter les interactions entre variables explicatives, ainsi que l'autocorrélation spatiale. La contribution de différentes sources de données issues de la télédétection a également été évaluée. Le deuxième article (en voie de soumission) explore les effets combinés de la taille de l'échantillon et de la post-stratification sur le la précision des modèles. Les données utilisées ici sont celles concernant la répartition des prairies de Suisse recueillies dans le cadre du projet Landspot et complétées par d'autres sources. Pour la stratification des données, différents cadres spatiaux ont été comparés. En particulier, la stratification environnementale par les domaines environnementaux de Suisse a été comparée à la stratification géographique par les régions biogéographiques ou par les cantons. Le troisième article (en voie de soumission) évalue la contribution de communautés végétales pré-modélisées à la modélisation de la faune. C'est une approche en deux étapes qui combine les disciplines de l'écologie des communautés et de l'écologie spatiale en intégrant leurs concepts de 'habitat' respectifs. Les communautés végétales sont modélisées d'abord, puis ces unités de 'habitat' sont utilisées pour modéliser les espèces animales. Une étude de cas est présentée avec des communautés prairiales et des espèces de papillons. Différentes façons d'intégrer l'information sur la végétation dans les modèles de répartition des papillons sont évaluées. Enfin, un clin d'oeil aux changements climatiques dans le dernier article, publié dans Ecological Modelling. Cet article propose un cadre conceptuel pour l'analyse des changements dans la distribution des espèces qui comprend notamment un catalogue des différentes formes possibles de changement le long d'un gradient d'élévation ou autre gradient environnemental, et une méthode quantitative améliorée pour identifier et décrire ces déplacements. Cette méthodologie a été développée en utilisant des données issues du monitoring des oiseaux nicheurs répandus et l'article présente les résultats concernant les déplacements observés dans la distribution altitudinale des oiseaux nicheurs en Suisse.L'objectif général de cette thèse est d'améliorer les modèles de distribution des espèces en tant que source d'information possible pour les différents outils de conservation (par exemple, listes rouges, réseaux écologiques, évaluation des risques de propagation d'espèces envahissantes, évaluation de la vulnérabilité des espèces dans le contexte de changement climatique). Bien que ces questions de conservation ne soient pas directement testées dans cette thèse, l'importance des améliorations proposées pour la modélisation de la distribution des espèces est discutée à la fin de ce travail dans le contexte de la sélection de réseaux de réserves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: A clinical decision rule to improve the accuracy of a diagnosis of influenza could help clinicians avoid unnecessary use of diagnostic tests and treatments. Our objective was to develop and validate a simple clinical decision rule for diagnosis of influenza. METHODS: We combined data from 2 studies of influenza diagnosis in adult outpatients with suspected influenza: one set in California and one in Switzerland. Patients in both studies underwent a structured history and physical examination and had a reference standard test for influenza (polymerase chain reaction or culture). We randomly divided the dataset into derivation and validation groups and then evaluated simple heuristics and decision rules from previous studies and 3 rules based on our own multivariate analysis. Cutpoints for stratification of risk groups in each model were determined using the derivation group before evaluating them in the validation group. For each decision rule, the positive predictive value and likelihood ratio for influenza in low-, moderate-, and high-risk groups, and the percentage of patients allocated to each risk group, were reported. RESULTS: The simple heuristics (fever and cough; fever, cough, and acute onset) were helpful when positive but not when negative. The most useful and accurate clinical rule assigned 2 points for fever plus cough, 2 points for myalgias, and 1 point each for duration <48 hours and chills or sweats. The risk of influenza was 8% for 0 to 2 points, 30% for 3 points, and 59% for 4 to 6 points; the rule performed similarly in derivation and validation groups. Approximately two-thirds of patients fell into the low- or high-risk group and would not require further diagnostic testing. CONCLUSION: A simple, valid clinical rule can be used to guide point-of-care testing and empiric therapy for patients with suspected influenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Switzerland there is a strong movement at a national policy level towards strengthening patient rights and patient involvement in health care decisions. Yet, there is no national programme promoting shared decision making. First decision support tools (prenatal diagnosis and screening) for the counselling process have been developed and implemented. Although Swiss doctors acknowledge that shared decision making is important, hierarchical structures and asymmetric physician-patient relationships are still prevailing. The last years have seen some promising activities regarding the training of medical students and the development of patient support programmes. Swiss direct democracy and the habit of consensual decision making and citizen involvement in general may provide a fertile ground for SDM development in the primary care setting.