102 resultados para Inflammatory cytokines
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: The relation of serum uric acid (SUA) with systemic inflammation has been little explored in humans and results have been inconsistent. We analyzed the association between SUA and circulating levels of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor- alpha (TNF-alpha) and C-reactive protein (CRP). METHODS AND FINDINGS: This cross-sectional population-based study conducted in Lausanne, Switzerland, included 6085 participants aged 35 to 75 years. SUA was measured using uricase-PAP method. Plasma TNF-alpha, IL-1beta and IL-6 were measured by a multiplexed particle-based flow cytometric assay and hs-CRP by an immunometric assay. The median levels of SUA, IL-6, TNF-alpha, CRP and IL-1beta were 355 micromol/L, 1.46 pg/mL, 3.04 pg/mL, 1.2 mg/L and 0.34 pg/mL in men and 262 micromol/L, 1.21 pg/mL, 2.74 pg/mL, 1.3 mg/L and 0.45 pg/mL in women, respectively. SUA correlated positively with IL-6, TNF-alpha and CRP and negatively with IL-1beta (Spearman r: 0.04, 0.07, 0.20 and 0.05 in men, and 0.09, 0.13, 0.30 and 0.07 in women, respectively, P<0.05). In multivariable analyses, SUA was associated positively with CRP (beta coefficient +/- SE = 0.35+/-0.02, P<0.001), TNF-alpha (0.08+/-0.02, P<0.001) and IL-6 (0.10+/-0.03, P<0.001), and negatively with IL-1beta (-0.07+/-0.03, P = 0.027). Upon further adjustment for body mass index, these associations were substantially attenuated. CONCLUSIONS: SUA was associated positively with IL-6, CRP and TNF-alpha and negatively with IL-1beta, particularly in women. These results suggest that uric acid contributes to systemic inflammation in humans and are in line with experimental data showing that uric acid triggers sterile inflammation.
Resumo:
PURPOSE: A pleiotropic effect of statins has been reported in numerous studies. However, the association between statin use and inflammatory cytokines is controversial. We examined the associations between statin use and C-reactive protein (CRP), tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in a healthy Caucasian population. METHODS: Cross-sectional study of 6184 participants aged 35-75years from Lausanne, Switzerland. Cytokines were assessed by multiplexed particle-based flow cytometric assay. Self-reported history of medication was collected for statins and other medication. 99 participants without cytokine data were excluded. RESULTS: Among the 6085 participants, 2289 (37.6%), 451 (7.4%) and 43 (0.7%) had IL-1β, IL-6 and TNF-α levels below detection limits, respectively. On multivariate analysis adjusting for age, gender, smoking status, body mass index, hypertension, diabetes, baseline cardiovascular disease, total cholesterol, anti-inflammatory use, other cytokine modifying drugs and other drugs, participants on statins had significantly lower CRP levels (adjusted mean±standard error: 1.22±1.05 vs. 1.38±1.04mg/L for use and non-use, respectively, p<0.01 on log-transformed data). Conversely, no association was found between statin use and IL-1β (p=0.91), IL-6 (p=0.25) or TNF-α (p=0.28) levels. On multivariate analysis, individuals in the statin group (β coefficient=-0.12; 95% CI=-0.21, -0.03) had lower levels of CRP as compared to those in the reference group (i.e. those not using statin). However, no significant associations were observed between IL-1β, IL-6 and TNF-α and statins. CONCLUSION: Individuals on statins have lower CRP levels; conversely, no effect was found for IL-1β, IL-6 and TNF-α levels.
Resumo:
We have previously reported that the pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) induce profound modifications of the metabolic profile of astrocytes. The present study was undertaken to further characterize the effects of cytokines in astrocytes and to determine whether similar effects could also be observed in neurons. To do so, selected pro-inflammatory (IL-6 and interferon-γ, in addition to the above-mentioned TNFα and IL-1β) and anti-inflammatory cytokines (IL-4, IL-10, transforming growth factor-β1 and interferon-β) were applied to primary neuronal and astrocytic cultures, and key metabolic parameters were assessed. As a general pattern, we observed that pro-inflammatory cytokines increased glucose utilization in astrocytes while the anti-inflammatory cytokines IL-4 and IL-10 decreased astrocytic glucose utilization. In contrast, no significant change could be observed in neurons. When pairs of pro-inflammatory cytokines were co-applied in astrocytes, several additive or synergistic modifications could be observed. In contrast, IL-10 partially attenuated the effects of pro-inflammatory cytokines. Finally, the modifications of the astrocytic metabolism induced by TNFα + IL-1β and interferon-γ modulated neuronal susceptibility to an excitotoxic insult in neuron-astrocyte co-cultures. Together, these results suggest that pro- and anti-inflammatory cytokines differentially affect the metabolic profile of astrocytes, and that these changes have functional consequences for surrounding neurons.
Resumo:
The transcription factors CCAAT/enhancer binding protein (C/EBP)-beta and -delta are key regulators for the expression of the acute phase genes in the liver, such as complement component C3 and antichymotrypsin. In the brain, these acute phase proteins are produced in response to pro-inflammatory cytokines by the reactive astrocytes, in particular those surrounding the amyloid plaques of Alzheimer's disease brains. Here we show that lipopolysaccharides (LPS), IL-1beta, and TNFalpha induce the expression of the c/ebpbeta and -delta genes in mouse primary astrocytes. This induction precedes the expression of the acute phase genes coding for the complement component C3 and the mouse homologue of antichymotrypsin. The induction of these two acute phase genes by LPS is blocked by cycloheximide, whereas this protein synthesis inhibitor does not affect the expression of the c/ebp genes. Altogether, our data support a role as immediate-early genes for c/ebpbeta and -delta, whose expression is induced by pro-inflammatory cytokines in mouse cortical astrocytes. In the liver, these transcription factors are known to play an important role in inflammation and energy metabolism regulation. Therefore, C/EBPbeta and -delta could be pivotal transcription factors involved in brain inflammation, in addition to their previously demonstrated role in brain glycogen metabolism regulation (Cardinaux and Magistretti. J Neurosci 16:919-929, 1996).
Resumo:
BACKGROUND: Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways. CONCLUSIONS/SIGNIFICANCE: W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.
Resumo:
Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms
Resumo:
Pro-inflammatory cytokines and high-sensitive C-reactive protein (hs-CRP) are associated with increased risk for cardiovascular disease. Low-dose aspirin for CV prevention is reported to have anti-inflammatory effects. The aim of this study was to determine the association between pro-inflammatory cytokines and hs-CRP levels and low-dose aspirin use for cardiovascular prevention in a population-based cohort (CoLaus Study). We assessed blood samples in 6085 participants (3201 women) aged 35-75years. Medications' use and indications were recorded. Among aspirin users (n=1'034; 17%), overall low-dose users (351; 5.8%) and low-dose for cardiovascular prevention users (324; 5.3%) were selected for analysis. Pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α were assessed by a multiplex particle-based flow cytometric assay and hs-CRP by an immunometric assay. Cytokines and hs-CRP were presented in quartiles. Multivariate analysis adjusting for sex, age, smoking status, body mass index, diabetes mellitus and immunomodulatory drugs showed no association between cytokines and hs-CRP levels and low-dose aspirin use for cardiovascular prevention, either comparing the topmost vs. the three other quartiles (OR 95% CI, 0.84 (0.59-1.18), 1.03 (0.78-1.32), 1.10 (0.83-1.46), 1.00 (0.67-1.69) for IL-1β, IL-6, TNF-α and hs-CRP, respectively), or comparing the topmost quartile vs. the first one (OR 95% CI, 0.87 (0.60-1.26), 1.19 (0.79-1.79), 1.26 (0.86-1.84), 1.06 (0.67-1.69)). Low-dose aspirin use for cardiovascular prevention does not impact plasma pro-inflammatory cytokine and hs-CRP levels in a population-based cohort.
Resumo:
Induction of the C/EBP homologous protein (CHOP) is considered a key event for endoplasmic reticulum (ER) stress-mediated apoptosis. Type 1 diabetes (T1D) is characterized by an autoimmune destruction of the pancreatic β-cells. Pro-inflammatory cytokines are early mediators of β-cell death in T1D. Cytokines induce ER stress and CHOP overexpression in β-cells, but the role for CHOP overexpression in cytokine-induced β-cell apoptosis remains controversial. We presently observed that CHOP knockdown (KD) prevents cytokine-mediated degradation of the anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1), thereby decreasing the cleavage of executioner caspases 9 and 3, and apoptosis. Nuclear factor-κB (NF-κB) is a crucial transcription factor regulating β-cell apoptosis and inflammation. CHOP KD resulted in reduced cytokine-induced NF-κB activity and expression of key NF-κB target genes involved in apoptosis and inflammation, including iNOS, FAS, IRF-7, IL-15, CCL5 and CXCL10. This was due to decreased IκB degradation and p65 translocation to the nucleus. The present data suggest that CHOP has a dual role in promoting β-cell death: (1) CHOP directly contributes to cytokine-induced β-cell apoptosis by promoting cytokine-induced mitochondrial pathways of apoptosis; and (2) by supporting the NF-κB activation and subsequent cytokine/chemokine expression, CHOP may contribute to apoptosis and the chemo attraction of mononuclear cells to the islets during insulitis.
Resumo:
Inflammation is one possible mechanism underlying the associations between mental disorders and cardiovascular diseases (CVD). However, studies on mental disorders and inflammation have yielded inconsistent results and the majority did not adjust for potential confounding factors. We examined the associations of several pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and high sensitive C-reactive protein (hsCRP) with lifetime and current mood, anxiety and substance use disorders (SUD), while adjusting for multiple covariates. The sample included 3719 subjects, randomly selected from the general population, who underwent thorough somatic and psychiatric evaluations. Psychiatric diagnoses were made with a semi-structured interview. Major depressive disorder was subtyped into "atypical", "melancholic", "combined atypical-melancholic" and "unspecified". Associations between inflammatory markers and psychiatric diagnoses were assessed using multiple linear and logistic regression models. Lifetime bipolar disorders and atypical depression were associated with increased levels of hsCRP, but not after multivariate adjustment. After multivariate adjustment, SUD remained associated with increased hsCRP levels in men (β = 0.13 (95% CI: 0.03,0.23)) but not in women. After multivariate adjustment, lifetime combined and unspecified depression were associated with decreased levels of IL-6 (β = -0.27 (-0.51,-0.02); β = -0.19 (-0.34,-0.05), respectively) and TNF-α (β = -0.16 (-0.30,-0.01); β = -0.10 (-0.19,-0.02), respectively), whereas current combined and unspecified depression were associated with decreased levels of hsCRP (β = -0.20 (-0.39,-0.02); β = -0.12 (-0.24,-0.01), respectively). Our data suggest that the significant associations between increased hsCRP levels and mood disorders are mainly attributable to the effects of comorbid disorders, medication as well as behavioral and physical CVRFs.
Resumo:
Backgrounds: Pro-inflammatory cytokines and high-sensitive C-reactive protein (hs-CRP) are associated with increased risk for cardiovascular disease. Low-dose aspirin for cardiovascular (CV) prevention is reported to have anti-inflammatory effects. The aim of this study was to determine the association between cytokines and hs-CRP levels and low-dose aspirin use for CV prevention in a population-based cohort (CoLaus Study). Methods and Results: Blood samples were assessed in 6,085 participants (3,201 women) aged 35-75 years. Medications' use and indications were recorded. Among aspirin users (n=1'034; 17%), overall low-dose (351; 5.8%) and low-dose for CV prevention (324; 5.3%) users were specifically selected for analysis. IL-1beta, IL-6 and TNF-alpha were assessed by a multiplex particle-based flow cytometric assay and hs-CRP by an immunometric assay. Cytokines and hs-CRP were presented in quartiles. Multivariate analysis adjusting for sex, age, smoking status, body mass index, concomitant use of various immunomodulatory drugs, diabetes mellitus showed no association between cytokines and hs-CRP levels and low-dose aspirin use for CV prevention either comparing the topmost vs. the three other quartiles (OR 95% CI, 0.84 (0.59 - 1.18), 1.03 (0.78 - 1.32), 1.10 (0.83 - 1.46), 1.00 (0.67 - 1.69) for IL-1beta, IL-6, TNF-alpha and hs-CRP, respectively), or comparing the topmost quartile vs. the first one (OR 95% CI, 0.87 (0.60 - 1.26), 1.19 (0.79 - 1.79), 1.26 (0.86 - 1.84), 1.06 (0.67 - 1.69)). Conclusions: Low-dose aspirin use for cardiovascular prevention does not seem to impact plasma cytokine and hs-CRP levels in a population-based cohort.
Resumo:
Summary: Particulate air pollution is associated with increased cardiovascular risk. The induction of systemic inflammation following particle inhalation represents a plausible mechanistic pathway. The purpose of this study was to assess the associations of short-term exposure to ambient particulate matters of aerodynamic diameter less than 10 μm (PM10) with circulating inflammatory markers in 6183 adults in Lausanne, Switzerland. The results show that short-term exposure to PM10 was associated with higher levels of circulating IL-6 and TNF-α. The positive association of PM10 with markers of systemic inflammation materializes the link between air pollution and cardiovascular risk. Background: Variations in short-term exposure to particulate matters (PM) have been repeatedly associated with daily all-cause mortality. Particle-induced inflammation has been postulated to be one of the important mechanisms for increased cardiovascular risk. Experimental in-vitro, in-vivo and controlled human studies suggest that interleukin 6 (IL-6) and tumor-necrosis-factor alpha (TNF-α) could represent key mediators of the inflammatory response to PM. The associations of short-term exposure to ambient PM with circulating inflammatory markers have been inconsistent in studies including specific subgroups so far. The epidemiological evidence linking short-term exposure to ambient PM and systemic inflammation in the general population is scarce. So far, large-scale population-based studies have not explored important inflammatory markers such as IL-6, IL-1β or TNF-α. We therefore analyzed the associations between short-term exposure to ambient PM10 and circulating levels of high-sensitive CRP (hs-CRP), IL-6, IL-1β and TNF-α in the population-based CoLaus study. Objectives: To assess the associations of short-term exposure to ambient particulate matters of aerodynamic diameter less than 10 μm (PM10) with circulating inflammatory markers, including hs-CRP, IL-6, IL-1β and TNF-α, in adults aged 35 to 75 years from the general population. Methodology: All study subjects were participants to the CoLaus study (www.colaus.ch) and the baseline examination was carried out from 2003 to 2006. Overall, 6184 participants were included. For the present analysis, 6183 participants had data on at least one of the four measured circulating inflammatory markers. The monitoring data was obtained from the website of Swiss National Air Pollution Monitoring Network (NABEL). We analyzed data on PM10 as well as outside air temperature, pressure and humidity. Hourly concentrations of PM10 were collected from 1 January 2003 to 31 December 2006. Robust linear regression (PROC ROBUSTREG) was used to evaluate the relationship between cytokine inflammatory and PM10. We adjusted all analyses for age, sex, body mass index, smoking status, alcohol consumption, diabetes status, hypertension status, education levels, zip code, and statin intake. All data were adjusted for the effects of weather by including temperature, barometric pressure, and season as covariates in the adjusted models. We performed simple and multiple logistic regression analyses. Descriptive statistical analysis used the Wilcoxon rank sum test (for medians). All data analyses were performed using SAS software (version 9.2; SAS Institute Inc., Cary, NC, USA), and a two-sided significance level of 5% was used. Results: PM10 levels averaged over 24 hours were significantly and positively associated with continuous IL-6 and TNF-α levels, in the whole study population both in unadjusted and adjusted analyses. For each cytokine, there was a similar seasonal pattern, with wider confidence intervals in summer than during the other seasons, which might partly be due to the smaller number of participants examined in summer. The associations of PM10 with IL-6 and TNF-α were also found after having dichotomized these cytokines into high versus low levels, which suggests that the associations of PM10 with the continuous cytokine levels are very robust to any distributional assumption and to potential outlier values. In contrast with what we observed for continuous IL-1β levels, high PM10 levels were significantly associated with high IL-1β. PM10 was significantly associated with IL-6 and TNF-α in men, but with TNF-α only in women. However, there was no significant statistical interaction between PM10 and sex. For IL-6 and TNF-α, the associations tended to be stronger in younger people, with a significant interaction between PM10 and age groups for IL-6. PM10 was significantly associated with IL-6 and TNF-α in the healthy group and also in the "non-healthy" group, although the statistical interaction between healthy status and PM10 was not significant. Conclusion: In summary, we found significant independent positive associations of short-term exposure to PM10 with circulating levels of IL-6 and TNF-α in the adult population of Lausanne. Our findings strongly support the idea that short-term exposure to PM10 is sufficient to induce systemic inflammation on a broad scale in the general population. From a public health perspective, the reported association of elevated inflammatory cytokines with short-term exposure to PM10 in a city with relatively clean air such as Lausanne supports the importance of limiting urban air pollution levels.
Resumo:
We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis.
Resumo:
Background: Infection with EBV and a lack in vitamin D may be important environmental triggers of MS. 1,25-(OH)2D3 mediates a shift of antigen presenting cells (APC) and CD4+ T cells to a less inflammatory profile. Although CD8+ T cells do express the vitamin D receptor, a direct effect of 1,25(OH)2D3 on these cells has not been demonstrated until now. Since CD8+ T cells are important immune mediators of the inflammatory response in MS, we examined whether vitamin D directly affects the CD8+ T cell response, and more specifically if it modulates the EBV-specific CD8+ T cell response. Material and Methods: To explore whether the vitamin D status may influence the pattern of the EBV-specific CD8+ T cell response, PBMC of 10 patients with early MS and 10 healthy controls (HC) were stimulated with a pool of immunodominant 8-10 mer peptide epitopes known to elicit CD8+ T cell responses. PBMC were stimulated with this EBV CD8 peptide pool, medium (negative control) or anti- CD3/anti-CD28 beads (positive control). The following assays were performed: ELISPOT to assess the secretion of IFN-gamma by T cells in general; cytometric beads array (CBA) and ELISA to determine whichcytokines were released by EBV-specific CD8+ T cells after six days of culture; and intracellular cytokine staining assay to determine by which subtype of T cells secreted given cytokines. To examine whether vitamin D could directly modulate CD8+ T cell immune responses, we depleted CD4+ T cells using negative selection. Results: We found that pre-treatment of vitamin D had an antiinflammatory action on both EBV-specific CD8+ T cells and on CD3/ CD28-stimulated T cells: secretion of pro-inflammatory cytokines (IFNgamma and TNF-alpha) was decreased, whereas secretion of antiinflammatory cytokines (IL-5 and TGF-beta) was increased. At baseline, CD8+ T cells of early MS patients showed a higher secretion of TNFalpha and lower secretion of IL-5. Addition of vitamin D did not restore the same levels of both cytokines as compared to HC. Vitamin D-pretreated CD8+T cells exhibited a decreased secretion of IFN-gamma and TNF-alpha, even after depletion of CD4+ T cells from culture. Conclusion: Vitamin D has a direct anti-inflammatory effect on CD8+ T cells independently from CD4+ T cells. CD8+ T cells of patients with earlyMS are less responsive to the inflammatory effect of vitamin D than HC, pointing toward an intrinsic dysregulation of CD8+ T cells. The modulation of EBV-specific CD8+T cells by vitaminDsuggests that there may be interplay between these twomajor environmental factors of MS. This study was supported by a grant from the Swiss National Foundation (PP00P3-124893), and by an unrestricted research grant from Bayer to RDP.