8 resultados para Industrial production

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanomaterials with structures in the nanoscale (1 to 100 nm) often have chemical, physical and bioactive characteristics different from those of larger entities of the same material. This is interesting for industry but raises questions about the health of exposed people. However, little is known so far about the exposure of workers to inhalable airborne nanomaterials. We investigated several activities in research laboratories and industry to learn about relevant exposure scenarios. Work process analyses were combined with measurements of airborne particle mass concentrations and number−size distributions. Background levels in research settings were mostly low, while in industrial production, levels were sometimes elevated, especially in halls near busy roads or in the presence of diesel fork lifts without particle filters. Peak levels were found in an industrial setting dealing with powders (up to 80,000 particles/cm³ and up to 15 mg/m³). Mostly low concentrations were found for activities involving liquid applications. However, centrifugation and lyophilization of nanoparticle containing solutions resulted in very high particle number concentrations (up to 300,000 particles/cm³), whereas no increases were seen for the same activities conducted with nanoparticle−free liquids. No significant increases of particle concentrations were found for processes involving nanoparticles bound to surfaces. Also no increases were observed in laboratories that were visualizing properties and structures of small amounts of nanomaterials. Conclusion: When studying exposure scenarios for airborne nanomaterials, the focus should not only be on processes involving nano−powders, but also on processes involving intensively treated nanoparticle−containing liquids. Acknowledgement: We thank Chantal Imhof, MSc and Guillaume Ferraris, MSc for their contributions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrosyneresis and double diffusion are immunoprecipitation techniques commonly used in the serological diagnosis of Farmer's lung disease (FLD). These techniques are reliable but lack standardization. The aim of this study was to evaluate Western blotting for the serodiagnosis of FLD. We carried out Western blotting with an antigenic extract of Lichtheimia corymbifera, an important aetiological agent of the disease. The membranes were probed with sera from 21 patients with FLD and 21 healthy exposed controls to examine the IgG antibody responses against purified somatic antigens. Given the low prevalence of the disease, 21 patients could be considered as a relevant series. Four bands were significantly more frequently represented in membranes probed with FLD sera (bands at 27.7, 40.5, 44.0 and 50.5 kDa) than those probed with control sera. We assessed the diagnostic value of different criteria alone or in combination. The diagnostic accuracy of the test was highest with the inclusion of at least two of the following criteria: at least five bands on the strip and the presence of one band at 40.5 or 44.0 kDa. Sensitivity, specificity and positive and negative predictive values were all 81%, and the odds ratio was 18.06. Inclusion of bands of high intensity diminished rather than improved the diagnostic value of the test. We concluded that Western blotting is a valuable technique for the serodiagnosis of FLD. The industrial production of ready-to-use membranes would enable the routine use of this technique in laboratories, and provide reliable and standardized diagnostic results within a few hours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrogen and oxygen isotopes of water and the carbon isotope composition of dissolved inorganic carbon (DIC) from different aquifers at an industrial site, highly contaminated by organic pollutants representing residues of the former gas production, have been used as natural tracers to characterize the hydrologic system. On the basis of their stable isotope compositions as well as the seasonal variations, different groups of waters (precipitation, surface waters, groundwaters and mineral waters) as well as seasonably variable processes of mixing between these waters can clearly be distinguished. In addition, reservoir effects and infiltration rates can be estimated. In the northern part of the site an influence of uprising mineral waters within the Quaternary aquifers, presumably along a fault zone, can be recognized. Marginal infiltration from the Neckar River in the cast and surface water infiltration adjacent to a steep hill on the western edge of the site with an infiltration rate of about one month can also be resolved through the seasonal variation. Quaternary aquifers closer to the centre of the site show no seasonal variations, except for one borehole close to a former mill channel and another borehole adjacent to a rain water channel. Distinct carbon isotope compositions and concentrations of DIC for these different groups of waters reflect variable influence of different components of the natural carbon cycle: dissolution of marine carbonates in the mineral waters, biogenic, soil-derived CO2 in ground- and surface waters, as well as additional influence of atmospheric CO2 for the surface waters. Many Quaternary aquifer waters have, however, distinctly lower delta(13)C(DIC) values and higher DIC concentrations compared to those expected for natural waters. Given the location of contaminated groundwaters at this site but also in the industrially well-developed valley outside of this site, the most likely source for the low C-13(DIC) values is a biodegradation of anthropogenic organic substances, in particular the tar oils at the site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil-grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%-1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is likely that during this century polymers based on renewable materials will gradually replace industrial polymers based on petrochemicals. This chapter gives an overview of the current status of research on plant biopolymers that are used as a material in non-food applications. We cover technical and scientific bottlenecks in the production of novel or improved materials, and the potential of using transgenic or alternative crops in overcoming these bottlenecks. Four classes of biopolymers will be discussed: starch, proteins, natural rubber, and poly-beta-hydroxyalkanoates. Renewable polymers produced by chemical polymerization of monomers derived from sugars, vegetable oil, or proteins, are not considered here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motivation for this research initiated from the abrupt rise and fall of minicomputers which were initially used both for industrial automation and business applications due to their significantly lower cost than their predecessors, the mainframes. Later industrial automation developed its own vertically integrated hardware and software to address the application needs of uninterrupted operations, real-time control and resilience to harsh environmental conditions. This has led to the creation of an independent industry, namely industrial automation used in PLC, DCS, SCADA and robot control systems. This industry employs today over 200'000 people in a profitable slow clockspeed context in contrast to the two mainstream computing industries of information technology (IT) focused on business applications and telecommunications focused on communications networks and hand-held devices. Already in 1990s it was foreseen that IT and communication would merge into one Information and communication industry (ICT). The fundamental question of the thesis is: Could industrial automation leverage a common technology platform with the newly formed ICT industry? Computer systems dominated by complex instruction set computers (CISC) were challenged during 1990s with higher performance reduced instruction set computers (RISC). RISC started to evolve parallel to the constant advancement of Moore's law. These developments created the high performance and low energy consumption System-on-Chip architecture (SoC). Unlike to the CISC processors RISC processor architecture is a separate industry from the RISC chip manufacturing industry. It also has several hardware independent software platforms consisting of integrated operating system, development environment, user interface and application market which enables customers to have more choices due to hardware independent real time capable software applications. An architecture disruption merged and the smartphone and tablet market were formed with new rules and new key players in the ICT industry. Today there are more RISC computer systems running Linux (or other Unix variants) than any other computer system. The astonishing rise of SoC based technologies and related software platforms in smartphones created in unit terms the largest installed base ever seen in the history of computers and is now being further extended by tablets. An underlying additional element of this transition is the increasing role of open source technologies both in software and hardware. This has driven the microprocessor based personal computer industry with few dominating closed operating system platforms into a steep decline. A significant factor in this process has been the separation of processor architecture and processor chip production and operating systems and application development platforms merger into integrated software platforms with proprietary application markets. Furthermore the pay-by-click marketing has changed the way applications development is compensated: Three essays on major trends in a slow clockspeed industry: The case of industrial automation 2014 freeware, ad based or licensed - all at a lower price and used by a wider customer base than ever before. Moreover, the concept of software maintenance contract is very remote in the app world. However, as a slow clockspeed industry, industrial automation has remained intact during the disruptions based on SoC and related software platforms in the ICT industries. Industrial automation incumbents continue to supply systems based on vertically integrated systems consisting of proprietary software and proprietary mainly microprocessor based hardware. They enjoy admirable profitability levels on a very narrow customer base due to strong technology-enabled customer lock-in and customers' high risk leverage as their production is dependent on fault-free operation of the industrial automation systems. When will this balance of power be disrupted? The thesis suggests how industrial automation could join the mainstream ICT industry and create an information, communication and automation (ICAT) industry. Lately the Internet of Things (loT) and weightless networks, a new standard leveraging frequency channels earlier occupied by TV broadcasting, have gradually started to change the rigid world of Machine to Machine (M2M) interaction. It is foreseeable that enough momentum will be created that the industrial automation market will in due course face an architecture disruption empowered by these new trends. This thesis examines the current state of industrial automation subject to the competition between the incumbents firstly through a research on cost competitiveness efforts in captive outsourcing of engineering, research and development and secondly researching process re- engineering in the case of complex system global software support. Thirdly we investigate the industry actors', namely customers, incumbents and newcomers, views on the future direction of industrial automation and conclude with our assessments of the possible routes industrial automation could advance taking into account the looming rise of the Internet of Things (loT) and weightless networks. Industrial automation is an industry dominated by a handful of global players each of them focusing on maintaining their own proprietary solutions. The rise of de facto standards like IBM PC, Unix and Linux and SoC leveraged by IBM, Compaq, Dell, HP, ARM, Apple, Google, Samsung and others have created new markets of personal computers, smartphone and tablets and will eventually also impact industrial automation through game changing commoditization and related control point and business model changes. This trend will inevitably continue, but the transition to a commoditized industrial automation will not happen in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial symbiosis (IS) emerged as a self-organizing business strategy among firms that are willing to cooperate to improve their economic and environmental performance. The adoption of such cooperative strategies relates to increasing costs of waste management, most of which are driven by policy and legislative requirements. Development of IS depends on an enabling context of social, informational, technological, economical and political factors. The power to influence this context varies among the agents involved such as the government, businesses or coordinating entities. Governmental intervention, as manifested through policies, could influence a wider range of factors; and we believe this is an area which is under-researched. This paper aims to critically appraise the waste policy interventions from supra-national to sub-national levels of government. A case study methodology has been applied to four European countries i.e. Denmark, the UK, Portugal and Switzerland, in which IS emerged or is being fostered. The findings suggest that there are commonalities in policy instruments that may have led to an IS enabling context. The paper concludes with lessons learnt and recommendations on shaping the policy context for IS development.