4 resultados para Indexing Software

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, morphometric measurements of the ascending aorta have been done with ECG-gated multidector computerized tomography (MDCT) to help the development of future novel transcatheter therapies (TCT); nevertheless, the variability of such measurements remains unknown. Thirty patients referred for ECG-gated CT thoracic angiography were evaluated. Continuous reformations of the ascending aorta, perpendicular to the centerline, were obtained automatically with a commercially available computer aided diagnosis (CAD). Then measurements of the maximal diameter were done with the CAD and manually by two observers (separately). Measurements were repeated one month later. The Bland-Altman method, Spearman coefficients, and a Wilcoxon signed-rank test were used to evaluate the variability, the correlation, and the differences between observers. The interobserver variability for maximal diameter between the two observers was up to 1.2 mm with limits of agreement [-1.5, +0.9] mm; whereas the intraobserver limits were [-1.2, +1.0] mm for the first observer and [-0.8, +0.8] mm for the second observer. The intraobserver CAD variability was 0.8 mm. The correlation was good between observers and the CAD (0.980-0.986); however, significant differences do exist (P<0.001). The maximum variability observed was 1.2 mm and should be considered in reports of measurements of the ascending aorta. The CAD is as reproducible as an experienced reader.