3 resultados para Impact on daily life

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Low motivation is frequent in chronic disorders such as psychosis and may limit treatment efficacy. Although some evidence supports this view in adults, few studies so far have focused on adolescents. We assessed the impact of baseline symptoms, cognitive deficits and cognitive treatment characteristics on treatment motivation (TM), and examined whether TM affected treatment outcome. Twenty-eight adolescents with psychotic disorders participated in 16 sessions of computerized cognitive remediation or games. TM was assessed for each session. Lower TM was predicted by more severe symptoms at baseline, and was associated with smaller improvements in symptoms and both cognitive and psychosocial functioning at the end of the intervention. Experiencing success in the treatment exercises enhanced TM in all patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methadone is administered as a chiral mixture of (R,S)-methadone. The opioid effect is mainly mediated by (R)-methadone, whereas (S)-methadone blocks the human ether-à-go-go-related gene (hERG) voltage-gated potassium channel more potently, which can cause drug-induced long QT syndrome, leading to potentially lethal ventricular tachyarrhythmias. To investigate whether substitution of (R,S)-methadone by (R)-methadone could reduce the corrected QT (QTc) interval, (R,S)-methadone was replaced by (R)-methadone (half-dose) in 39 opioid-dependent patients receiving maintenance treatment for 14 days. (R)-methadone was then replaced by the initial dose of (R,S)-methadone for 14 days (n = 29). Trough (R)-methadone and (S)-methadone plasma levels and electrocardiogram measurements were taken. The Fridericia-corrected QT (QTcF) interval decreased when (R,S)-methadone was replaced by a half-dose of (R)-methadone; the median (interquartile range [IQR]) values were 423 (398-440) milliseconds (ms) and 412 (395-431) ms (P = .06) at days 0 and 14, respectively. Using a univariate mixed-effect linear model, the QTcF value decreased by a mean of -3.9 ms (95% confidence interval [CI], -7.7 to -0.2) per week (P = .04). The QTcF value increased when (R)-methadone was replaced by the initial dose of (R,S)-methadone for 14 days; median (IQR) values were 424 (398-436) ms and 424 (412-443) ms (P = .01) at days 14 and 28, respectively. The univariate model showed that the QTcF value increased by a mean of 4.7 ms (95% CI, 1.3-8.1) per week (P = .006). Substitution of (R,S)-methadone by (R)-methadone reduces the QTc interval value. A safer cardiac profile of (R)-methadone is in agreement with previous in vitro and pharmacogenetic studies. If the present results are confirmed by larger studies, (R)-methadone should be prescribed instead of (R,S)-methadone to reduce the risk of cardiac toxic effects and sudden death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.