445 resultados para Imaging-plate Camera
em Université de Lausanne, Switzerland
Resumo:
A 41-year-old male presented with severe frostbite that was monitored clinically and with a new laser Doppler imaging (LDI) camera that records arbitrary microcirculatory perfusion units (1-256 arbitrary perfusion units (APU's)). LDI monitoring detected perfusion differences in hand and foot not seen visually. On day 4-5 after injury, LDI showed that while fingers did not experience any significant perfusion change (average of 31±25 APUs on day 5), the patient's left big toe did (from 17±29 APUs day 4 to 103±55 APUs day 5). These changes in regional perfusion were not detectable by visual examination. On day 53 postinjury, all fingers with reduced perfusion by LDI were amputated, while the toe could be salvaged. This case clearly demonstrates that insufficient microcirculatory perfusion can be identified using LDI in ways which visual examination alone does not permit, allowing prognosis of clinical outcomes. Such information may also be used to develop improved treatment approaches.
Resumo:
Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task.
Resumo:
Different interferometric techniques were developed last decade to obtain full field, quantitative, and absolute phase imaging, such as phase-shifting, Fourier phase microscopy, Hilbert phase microscopy or digital holographic microscopy (DHM). Although, these techniques are very similar, DHM combines several advantages. In contrast, to phase shifting, DHM is indeed capable of single-shot hologram recording allowing a real-time absolute phase imaging. On the other hand, unlike to Fourier phase or Hilbert phase microscopy, DHM does not require to record in focus images of the specimen on the digital detector (CCD or CMOS camera), because a numerical focalization adjustment can be performed by a numerical wavefront propagation. Consequently, the depth of view of high NA microscope objectives is numerically extended. For example, two different biological cells, floating at different depths in a liquid, can be focalized numerically from the same digital hologram. Moreover, the numerical propagation associated to digital optics and automatic fitting procedures, permits vibrations insensitive full- field phase imaging and the complete compensation for a priori any image distortion or/and phase aberrations introduced for example by imperfections of holders or perfusion chamber. Examples of real-time full-field phase images of biological cells have been demonstrated. ©2008 COPYRIGHT SPIE
Resumo:
To compare autofluorescence (AF) images obtained with the confocal scanning laser ophthalmoscope (using the Heidelberg retina angiograph; HRA) and the modified Topcon fundus camera, in a routine clinical setting. A prospective comparative study conducted at the Jules-Gonin Eye Hospital. Fifty-six patients from the medical retina clinic. All patients had complete ophthalmic slit-lamp and fundus examinations, colour and red-free fundus photography, AF imaging with both instruments, and fluorescein angiography. Cataract and fixation were graded clinically. AF patterns were analyzed for healthy and pathological features. Differences of image noise were analyzed by cataract grading and fixation. A total of 105 eyes were included. AF patterns discovered by the retina angiograph and the fundus camera images, respectively, were a dark optic disc in 72 % versus 15 %, a dark fovea in 92 % versus 4 %, sub- and intraretinal fluid visible as hyperautofluorescence on HRA images only, lipid exudates visible as hypoautofluorescence on HRA images only. The same autofluorescent pattern was found on both images for geographic atrophy, retinal pigment changes, drusen and haemorrhage. Image noise was significantly associated with the degree of cataract and/or poor fixation, favouring the fundus camera. Images acquired by the fundus camera before and after fluorescein angiography were identical. Fundus AF images differ according to the technical differences of the instruments used. Knowledge of these differences is important not only for correctly interpreting images, but also for selecting the most appropriate instrument for the clinical situation.
Resumo:
Purpose: To investigate the differences between Fundus Camera (Topcon TRC-50X) and Confocal Scanning Laser Ophthalmoscope (Heidelberg retina angiogram (HRA)) on the fundus autofluorescence (FAF) imaging (resolution and FAF characteristics). Methods: 105 eyes of 56 patients with various retinal diseases underwent FAF imaging with HRA (488nm exciter/500nm barrier filter) before fluorescein angiography (FFA) and Topcon Fundus Camera (580nm exciter/695nm barrier filter) before and after FFA. The quality of the FAF images was compared for their resolution and analysed for the influence of fixation stability and cataracts. Hypo-and hyper-FAF behaviour was analysed for the healthy disc, healthy fovea, and a variety of pathological features. Results: HRA images were found to be of superior resolution in 18, while Topcon images were estimated superior in 29 eyes. No difference was found in 58 eyes. Both poor fixation (p=0.009) and more advanced cataract (p=0.013) were found associated with better image quality by Topcon. Images acquired by Topcon before and after FFA were identical (100%). The healthy disc was usually dark on HRA (72%), but showed mild autofluorescence on Topcon (85%). The healthy fovea showed in 100% Hypo-FAF on HRA, while Topcon showed in 53% Iso-FAF, in 43% mild Hypo-FAF, and in 4% Hypo-FAF as on HRA. No difference of FAF was found for geographic atrophy, pigment changes, and drusen, although Topcon images were often more detailed. Hyper-FAF due to serous exudation showed better on HRA. Cystic edema was visible only on HRA in a petaloid hyper-FAF pattern in 83%, while only two eyes (17%) showed similar behavior in both HRA- and Topcon images. Hard exudates caused Hypo-FAF only on HRA, hardly visible on Topcon. Blockage phenomenon by blood however was identical. Conclusions: The filter set of Topcon and the single image acquisition appear to be an advantage for patients with cataract and poor fixation respectively. Preceding FFA does not alter the Topcon FAF image. Regarding the FAF behavior, there are differences between the 2 systems which need to be taken into account when interpreting the images.
Resumo:
The Polochic and Motagua faults define the active plate boundary between the North American and Caribbean plates in central Guatemala. A splay of the Polochic Fault traverses the rapidly growing city of San Miguel Uspantan that is periodically affected by destructive earthquakes. This fault splay was located using a 2D electrical resistivity tomography (ERT) survey that also characterized the fault damage zone and evaluated the thickness and nature of recent deposits upon which most of the city is built. ERT images show the fault as a similar to 50 m wide, near-vertical low-resistivity anomaly, bounded within a few meters by high resistivity anomalies. Forward modeling reproduces the key aspects of the observed electrical resistivity data with remarkable fidelity thus defining the overall location, geometry, and internal structure of the fault zone as well as the affected lithologies. Our results indicate that the city is constructed on a similar to 20 m thick surficial layer consisting of poorly consolidated, highly porous, water-logged pumice. This soft layer is likely to amplify seismic waves and to liquefy upon moderate to strong ground shaking. The electrical conductivity as well as the major element chemistry of the groundwater provides evidence to suggest that the local aquifer might, at least in part, be fed by water rising along the fault. Therefore, the potential threat posed by this fault splay may not be limited to its seismic activity per se, but could be compounded its potential propensity to enhance seismic site effects by injecting water into the soft surficial sediments. The results of this study provide the basis for a rigorous analysis of seismic hazard and sustainable development of San Miguel Uspantan and illustrate the potential of ERT surveying for paleoseismic studies.
Resumo:
Purpose: To investigate the differences between the Fundus Camera (Topcon TRC-50X) and Confocal Scanning Laser Ophthalmoscope (Heidelberg retina angiogram (HRA)) on the fundus autofluorescence (FAF) imaging (resolution and FAF characteristics). Methods: Eighty nine eyes of 46 patients with various retinal diseases underwent FAF imaging with HRA (488nm exciter / 500nm barrier filter) before fluorescein angiography (FFA) and Topcon Fundus Camera (580nm exciter / 695nm barrier filter) before and after FFA. The quality of the FAF images was estimated, compared for their resolution and analysed for the influence of fixation stability and cataracts. Hypo- and hyper-FAF behaviour was analysed for the healthy disc, healthy fovea, and a variety of pathological features. Results: HRA images were found to be of superior quality in 18 eyes, while Topcon images were estimated superior in 21 eyes. No difference was found in 50 eyes. Both poor fixation (p=0.009) and more advanced cataract (p=0.013) were found to strongly increase the likelihood of better image quality by Topcon. Images acquired by Topcon before and after FFA were identical (100%). The healthy disc was usually dark on HRA (71%), but showed mild autofluorescence on Topcon (88%). The healthy fovea showed in 100% Hypo-FAF on HRA, while Topcon showed in 52% Iso-FAF, in 43% mild Hypo-FAF, and in 5% Hypo-FAF as on HRA. No difference of FAF was found for geographic atrophy, pigment changes, and drusen, although Topcon images were often more detailed. Hyper-FAF due to exudation showed better on HRA. Pigment epithelium detachment showed identical FAF behaviour on the border, but reduced FAF with Topcon in the center. Cystic edema was visible only on HRA in a petaloid pattern. Hard exsudates caused Hypo-FAF only on HRA, hardly visible on Topcon. Blocage phenomenon by blood however was identical. Conclusions: The filter set of Topcon and the single image acquisition appear to be an advantage for patients with cataract or poor fixation. Preceding FFA does not alter the Topcon FAF image. Regarding the FAF behaviour, there are differences between the two systems which need to be taken into account when interpreting the images.
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
Hypoxia, a condition of insufficient oxygen availability to support metabolism, occurs when the vascular supply is interrupted, as in stroke. The identification of the hypoxic and viable tissue in stroke as compared with irreversible lesions (necrosis) has relevant implications for the treatment of ischemic stroke. Traditionally, imaging by positron emission tomography (PET), using 15O-based radiotracers, allowed the measurement of perfusion and oxygen extraction in stroke, providing important insights in its pathophysiology. However, these multitracer evaluations are of limited applicability in clinical settings. More recently, specific tracers have been developed, which accumulate with an inverse relationship to oxygen concentration and thus allow visualizing the hypoxic tissue non invasively. These belong to two main groups: nitroimidazoles, and among these the 18F-Fluoroimidazole (18F-FMISO) is the most widely used, and the copper-based tracers, represented mainly by Cu-ATSM. While these tracers have been at first developed and tested in order to image hypoxia in tumors, they have also shown promising results in stroke models and preliminary clinical studies in patients with cardiovascular disorders, allowing the detection of hypoxic tissue and the prediction of the extent of subsequent ischemia and clinical outcome. These tracers have therefore the potential to select an appropriate subgroup of patients who could benefit from a hypoxia-directed treatment and provide prognosis relevant imaging. The molecular imaging of hypoxia made important progress over the last decade and has a potential for integration into the diagnostic and therapeutic workup of patients with ischemic stroke.
Resumo:
OBJECTIVE-We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.RESEARCH DESIGN AND METHODS-Whole pancreata from untreated (n = 3), MnCl(2) and glucose-injected mice (n = 6), and mice injected with either streptozotocin (STZ; n = 4) or citrate buffer (n = 4) were imaged ex vivo for unambiguous evaluation of islets. Exteriorized pancreata of MnCl(2) and glucose-injected mice (n = 6) were imaged in vivo to directly visualize the gland and minimize movements. In all cases, MR images were acquired in a 14.1 Testa scanner and correlated with the corresponding (immuno)histological sections.RESULTS-In ex vivo experiments, MEHFMRI distinguished different pancreatic tissues and evaluated the relative abundance of islets in the pancreata of normoglycemic mice. MEHFMRI also detected a significant decrease in the numerical and volume density of islets in STZ-injected mice. However, in the latter measurements the loss of beta-cells was undervalued under the conditions tested. The experiments on the externalized pancreata confirmed that MEHFMRI could visualize native individual islets in living, anesthetized mice.CONCLUSIONS-Data show that MEHFMRI quantitatively visualizes individual islets in the intact mouse pancreas, both ex vivo and in vivo. Diabetes 60:2853-2860, 2011
Resumo:
Standard chest radiographs have been shown to be insensitive for the diagnosis of morphologic abnormalities of airways. Computed tomography is the most sensitive and specific investigation to diagnose emphysema. However, as emphysema may be missed on computed tomography, this investigation cannot be used to definitely rule out the diagnosis. Computed tomography may contribute to the investigation of bronchiolitis, and it is now considered as the gold standard for establishing the diagnosis of bronchiectasis. Imaging may contribute to identify complications such as bronchopulmonary infection, pulmonary hypertension, pneumothorax, cancer of the lung, compressive bullae, and pulmonary embolism.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.