8 resultados para Ileus
em Université de Lausanne, Switzerland
Resumo:
Context: In the past 50 years, the use of prosthetic mesh in surgery has dramatically¦changed the management of primary, as well as incisional hernias. Currently, there¦are a large number of different mesh brands and no consensus on the best material,¦nor the best mesh implantation technique to use. The purpose of this study is to¦illustrate the adverse effects of intraperitoneal onlay mesh used for incisional¦hernia repair encountered in patients treated at CHUV for complications after¦incisional hernia repair.¦Materials & Methods: This work is an observational retrospective study. A PubMed¦search and a systematic review of literature were performed. Thereafter, the medical¦records of 22 patients who presented with pain, abdominal discomfort, ileus, fistula,¦abscess, seroma, mesh infection or recurrent incisional hernia after a laparoscopic or¦open repair with intra-abdominal mesh were reviewed.¦Results: Twenty-two persons were reoperated for complications after incisional¦hernia repair with a prosthetic mesh. Ten were male and twelve female, with a¦median age of 58,6 years (range 24-82). Mesh placement was performed by a¦laparoscopic approach in nine patients and by open approach in thirteen others.¦Eight different mesh brands were found (Ultrapro®, Mersilene®, Parietex Composite®,¦Proceed®, DynaMesh®, Gore® DualMesh®, Permacol®, Titanium Metals UK Ltd®).¦Mean time from implantation and reoperation for complication was 34.2 months¦(range 1-147). In our sample of 22 patients, 21 (96%) presented mesh adhesion and¦15 (68%) presented hernia recurrence. Others complications like mesh shrinkage,¦mesh migration, nerve entrapment, seroma, fistula and abscess were also evaluated.¦Conclusion: The majority of articles deal with complications induced by¦intraperitoneal prosthetic mesh, but the effectiveness of mesh has been studied¦mostly on experimental models. Actually and as shown in the present study,¦intraperitoneal mesh placement was associated with severe complications witch may¦potentially be life threatening. In our opinion, intraperitoneal mesh placement should¦only be reserved in exceptional situations, when the modified Rives-Stoppa could not¦be achieved and when tissues covering the mesh are insufficient.
Resumo:
PURPOSE: Enhanced recovery after surgery (ERAS) pathways have significantly reduced complications and length of hospital stay after colorectal procedures. This multimodal concept could probably be partially applied to major urological surgery. OBJECTIVES: The primary objective was to systematically assess the evidence of ERAS single items and protocols applied to cystectomy patients. The secondary objective was to address a grade of recommendation to each item, based on the evidence and, if lacking, on consensus opinion from our ERAS Society working group. EVIDENCE ACQUISITION: A systematic literature review was performed on ERAS for cystectomy by searching EMBASE and Medline. Relevant articles were selected and quality-assessed by two independent reviewers using the GRADE approach. If no study specific to cystectomy was available for any of the 22 given items, the authors evaluated whether colorectal guidelines could be extrapolated. EVIDENCE SYNTHESIS: Overall, 804 articles were retrieved from electronic databases. Fifteen articles were included in the present systematic review and 7 of 22 ERAS items were studied. Bowel preparation did not improve outcomes. Early nasogastric tube removal reduced morbidity, bowel recovery time and length of hospital stay. Doppler-guided fluid administration allowed for reduced morbidity. A quicker bowel recovery was observed with a multimodal prevention of ileus, including gum chewing, prevention of PONV and minimally invasive surgery. CONCLUSIONS: ERAS has not yet been widely implemented in urology and evidence for individual interventions is limited or unavailable. The experience in other surgical disciplines encourages the development of an ERAS protocol for cystectomy.
Resumo:
Refractory status epilepticus (RSE)-that is, seizures resistant to at least two antiepileptic drugs (AEDs)-is generally managed with barbiturates, propofol, or midazolam, despite a low level of evidence (Rossetti, 2007). When this approach fails, the need for alternative pharmacologic and nonpharmacologic strategies emerges. These have been investigated even less systematically than the aforementioned compounds, and are often used, sometimes in succession, in cases of extreme refractoriness (Robakis & Hirsch, 2006). Several possibilities are reviewed here. In view of the marked heterogeneity of reported information, etiologies, ages, and comedications, it is extremely difficult to evaluate a given method, not to say to compare different strategies among them. Pharmacologic Approaches Isoflurane and desflurane may complete the armamentarium of anesthetics,' and should be employed in a ''close'' environment, in order to prevent intoxication of treating personnel. c-Aminobutyric acid (GABA)A receptor potentiation represents the putative mechanism of action. In an earlier report, isoflurane was used for up to 55 h in nine patients, controlling seizures in all; mortality was, however, 67% (Kofke et al., 1989). More recently, the use of these inhalational anesthetics was described in seven subjects with RSE, for up to 26 days, with an endtidal concentration of 1.2-5%. All patients required vasopressors, and paralytic ileus occurred in three; outcome was fatal in three patients (43%) (Mirsattari et al., 2004). Ketamine, known as an emergency anesthetic because of its favorable hemodynamic profile, is an N-methyl-daspartate (NMDA) antagonist; the interest for its use in RSE derives from animal works showing loss of GABAA efficacy and maintained NMDA sensitivity in prolonged status epilepticus (Mazarati & Wasterlain, 1999). However, to avoid possible neurotoxicity, it appears safer to combine ketamine with GABAergic compounds (Jevtovic-Todorovic et al., 2001; Ubogu et al., 2003), also because of a likely synergistic effect (Martin & Kapur, 2008). There are few reported cases in humans, describing progressive dosages up to 7.5 mg/kg/h for several days (Sheth & Gidal, 1998; Quigg et al., 2002; Pruss & Holtkamp, 2008), with moderate outcomes. Paraldehyde acts through a yet-unidentified mechanism, and appears to be relatively safe in terms of cardiovascular tolerability (Ramsay, 1989; Thulasimani & Ramaswamy, 2002), but because of the risk of crystal formation and its reactivity with plastic, it should be used only as fresh prepared solution in glass devices (Beyenburg et al., 2000). There are virtually no recent reports regarding its use in adults RSE, whereas rectal paraldehyde in children with status epilepticus resistant to benzodiazepines seems less efficacious than intravenous phenytoin (Chin et al., 2008). Etomidate is another anesthetic agent for which the exact mechanism of action is also unknown, which is also relatively favorable regarding cardiovascular side effects, and may be used for rapid sedation. Its use in RSE was reported in eight subjects (Yeoman et al., 1989). After a bolus of 0.3 mg/kg, a drip of up to 7.2 mg/kg/h for up to 12 days was administered, with hypotension occurring in five patients; two patients died. A reversible inhibition of cortisol synthesis represents an important concern, limiting its widespread use and implying a careful hormonal substitution during treatment (Beyenburg et al., 2000). Several nonsedating approaches have been reported. The use of lidocaine in RSE, a class Ib antiarrhythmic agent modulating sodium channels, was reviewed in 1997 (Walker & Slovis, 1997). Initial boluses up to 5 mg/kg and perfusions of up to 6 mg/kg/h have been mentioned; somewhat surprisingly, at times lidocaine seemed to be successful in controlling seizures in patients who were refractory to phenytoin. The aforementioned dosages should not be overshot, in order to keep lidocaine levels under 5 mg/L and avoid seizure induction (Hamano et al., 2006). A recent pediatric retrospective survey on 57 RSE episodes (37 patients) described a response in 36%, and no major adverse events; mortality was not given (Hamano et al., 2006 Verapamil, a calcium-channel blocker, also inhibits P-glycoprotein, a multidrug transporter that may diminish AED availability in the brain (Potschka et al., 2002). Few case reports on its use in humans are available; this medication nevertheless appears relatively safe (under cardiac monitoring) up to dosages of 360 mg/day (Iannetti et al., 2005). Magnesium, a widely used agent for seizures elicited by eclampsia, has also been anecdotally reported in RSE (Fisher et al., 1988; Robakis & Hirsch, 2006), but with scarce results even at serum levels of 14 mm. The rationale may be found in the physiologic blockage of NMDA channels by magnesium ions (Hope & Blumenfeld, 2005). Ketogenic diet has been prescribed for decades, mostly in children, to control refractory seizures. Its use in RSE as ''ultima ratio'' has been occasionally described: three of six children (Francois et al., 2003) and one adult (Bodenant et al., 2008) were responders. This approach displays its effect subacutely over several days to a few weeks. Because ''malignant RSE'' seems at times to be the consequence of immunologic processes (Holtkamp et al., 2005), a course of immunomodulatory treatment is often advocated in this setting, even in the absence of definite autoimmune etiologies (Robakis & Hirsch, 2006); steroids, adrenocorticotropic hormone (ACTH), plasma exchanges, or intravenous immunoglobulins may be used alone or in sequential combination. Nonpharmacologic Approaches These strategies are described somewhat less frequently than pharmacologic approaches. Acute implantation of vagus nerve stimulation (VNS) has been reported in RSE (Winston et al., 2001; Patwardhan et al., 2005; De Herdt et al., 2009). Stimulation was usually initiated in the operation room, and intensity progressively adapted over a few days up to 1.25 mA (with various regimens regarding the other parameters), allowing a subacute seizure control; one transitory episode of bradycardia/asystole has been described (De Herdt et al., 2009). Of course, pending identification of a definite seizure focus, resective surgery may also be considered in selected cases (Lhatoo & Alexopoulos, 2007). Low-frequency (0.5 Hz) transcranial magnetic stimulation (TMS) at 90% of the resting motor threshold has been reported to be successful for about 2 months in a patient with epilepsia partialis continua, but with a weaning effect afterward, implying the need for a repetitive use (Misawa et al., 2005). More recently, TMS was applied in a combination of a short ''priming'' high frequency (up to 100 Hz) and longer runs of low-frequency stimulations (1 Hz) at 90-100% of the motor threshold in seven other patients with simple-partial status, with mixed results (Rotenberg et al., 2009). Paradoxically at first glance, electroconvulsive treatment may be found in cases of extremely resistant RSE. A recent case report illustrates its use in an adult patient with convulsive status, with three sessions (three convulsions each) carried out over 3 days, resulting in a moderate recovery; the mechanism is believed to be related to modification of the synaptic release of neurotransmitters (Cline & Roos, 2007). Therapeutic hypothermia, which is increasingly used in postanoxic patients (Oddo et al., 2008), has been the object of a recent case series in RSE (Corry et al., 2008). Reduction of energy demand, excitatory neurotransmission, and neuroprotective effects may account for the putative mechanism of action. Four adult patients in RSE were cooled to 31_-34_C with an endovascular system for up to 90 h, and then passively rewarmed over 2-50 h. Seizures were controlled in two patients, one of whom died; also one of the other two patients in whom seizures continued subsequently deceased. Possible side effects are related to acid-base and electrolyte disturbances, and coagulation dysfunction including thrombosis, infectious risks, cardiac arrhythmia, and paralytic ileus (Corry et al., 2008; Cereda et al., 2009). Finally, anecdotic evidence suggests that cerebrospinal fluid (CSF)-air exchange may induce some transitory benefit in RSE (Kohrmann et al., 2006); although this approach was already in use in the middle of the twentieth century, the mechanism is unknown. Acknowledgment A wide spectrum of pharmacologic (sedating and nonsedating) and nonpharmacologic (surgical, or involving electrical stimulation) regimens might be applied to attempt RSE control. Their use should be considered only after refractoriness to AED or anesthetics displaying a higher level of evidence. Although it seems unlikely that these uncommon and scarcely studied strategies will influence the RSE outcome in a decisive way, some may be interesting in particular settings. However, because the main prognostic determinant in status epilepticus appears to be related to the underlying etiology rather than to the treatment approach (Rossetti et al., 2005, 2008), the safety issue should always represent a paramount concern for the prescribing physician. Conclusion The author confirms that he has read the Journal's position on issues involved in ethical publication and affirms that this paper is consistent with those guidelines.
Resumo:
Two cases of neonatal focal spontaneous colic perforations are reported. The 1st infant, born at 36 3/7 weeks gestational age, presented on day 3 with crying, abdominal distension, and liquid stools. Clinical examination showed a slightly irritable hypothermic (35.7 °C) infant with a distended abdomen and few bowel sounds. Blood tests were normal apart from an elevated C-reactive protein level (59 mg/l). The abdomen x-ray was erroneously considered normal. The infant's condition remained stable for nearly 3 days. After reviewing the initial x-ray, pneumoperitoneum was suspected and confirmed by a cross-table lateral abdominal x-ray. The infant was started on antibiotics and operated. Macroscopically, the entire gut was normal apart from a focal sigmoid perforation, which was stitched. A transmural colic biopsy revealed focal vascular dilation but was negative for necrotising enterocolitis or Hirschsprung disease. The infant recovered quickly. She is now a healthy, normal 3-year-old. The 2nd infant, born at 38 5/7 weeks gestational age, presented between day 1 and 2 with clinical signs of infection associated with slowly progressive ileus. The chest and abdomen x-ray was mistakenly considered normal. Frank septicemia developed. After reviewing the initial x-ray, pneumoperitoneum was suspected and confirmed by a cross-table lateral abdominal x-ray. The infant was operated. Macroscopically, the small intestine was normal, the ascending and transverse colons were dilated, and the descending and sigmoid colons were narrow. Three cecal perforations were discovered and stitched. An ileostomy and multiple colic biopsies were also performed. The postoperative course was complicated by persistent septic ileus due to descending and sigmoid colon leaks, which led to colic resections with end-to-end anastomosis. Rectal aspiration biopsies were also performed. At 1 month of age, the infant was discharged from the hospital. The ileostomy was closed in two steps at 2 and 5 months of age. A normal sweat test excluded cystic fibrosis. All colic and rectal biopsies revealed nonspecific inflammatory signs and excluded necrotizing enterocolitis and Hirschsprung disease. Nonspecific irregular thinning of muscularis mucosae and muscularis propria were observed in the two resected colic segments. The boy is now a healthy 7-year-old. The incidence of neonatal focal spontaneous colic perforations at term or close to term is unknown but probably very rare. Our department is the neonatal referral center for approximately 14,000 annual births. In the last 10 years (2000-2009), out of 5115 neonatal admissions in our unit, only ten cases have presented a neonatal spontaneous intestinal perforation, seven of ten in very-low-birth-weight infants and three of ten in term or near-term neonates (one with Hirschsprung disease and the two cases reported herein). In the same period, 108 infants suffered from necrotizing enterocolitis, seven of 108 were term infants and 6 out of 7 had a congenital heart disease. The medical literature is poor on the subject of focal spontaneous colic perforations at term; no risk factor is described. The most specific clinical sign seems to be the abdominal distension. The presence of pneumoperitoneum on an abdominal x-ray is the most sensitive paraclinical sign. In case of an intestinal perforation, surgery must be performed quickly. The vital prognosis seems to be good. The objective of this study was to draw pediatricians' attention to focal spontaneous colic perforations in term or close to term newborns. In the cases reported, the diagnostic delays could have been prevented if the entity - with its radiological manifestation - had been well known.
Resumo:
BACKGROUND: Refractory status epilepticus (RSE) treatment is usually performed with coma induction using an appropriate general anesthetic. Most frequent complications are represented by hypotension and infection. Other side-effects may however be encountered. OBSERVATIONS: We describe two patients suffering from acute bowel ischemia after thiopental (THP) treatment for RSE. A 73-year-old man with a complex-patial RSE following an acute stroke received THP (303 mg/kg over 48 h); 36 h after THP discontinuation, he presented abdominal tenderness and lactate elevation. Necrosis of the terminal ileum and colon was seen during surgical exploration; he deceased shortly thereafter. A 21 year-old woman had a cryptogenic de novo generalized-convulsive RSE resistant to 5 attempts of EEG burst-suppression. During the 6th attempt, after THP (840 mg/kg over 150 h) together with mild hypothermia, she developed an ileus with elevated serum lactate; caecum necrosis was observed during surgery. Hypernatremia, acidosis and hyperlactatemia heralded this complication in both patients. CONCLUSION: In these two patients, mechanical vascular ischemia may have resulted from drug-induced paralytic ileus. To our knowledge, this is the first report describing this potential fatal side effect in adults with RSE.
Resumo:
AIM: According to the French GRECCAR III randomized trial, full mechanical bowel preparation (MBP) for rectal surgery decreases the rate of postoperative morbidity, in particular postoperative infectious complications, but MBP is not well tolerated by the patient. The aim of the present study was to determine whether a preoperative rectal enema (RE) might be an alternative to MBP. METHODS: An analysis was performed of 96 matched cohort patients undergoing rectal resection with primary anastomosis and protective ileostomy at two different university teaching hospitals, whose rectal cancer management was comparable except for the choice of preoperative bowel preparation (MBP or RE). Prospective databases were retrospectively analysed. RESULTS: Patients were well matched for age, gender, body mass index and Charlson index. The surgical approach and cancer characteristics (level above anal verge, stage and use of neoadjuvant therapy) were comparable between the two groups. Anastomotic leakage occurred in 10% of patients having MBP and in 8% having RE (P = 1.00). Pelvic abscess formation (6% vs 2%, P = 0.63) and wound infection (8% vs 15%, P = 0.55) were also comparable. Extra-abdominal infection (13% vs 13%, P = 1.00) and non-infectious abdominal complications such as ileus and bleeding (27% and 31%, P = 0.83) were not significantly different. Overall morbidity was comparable in the two groups (50% vs 54%, P = 0.83). CONCLUSION: A simple RE before rectal surgery seems not to be associated with more postoperative infectious complications nor a higher overall morbidity than MBP.