3 resultados para IRS-1
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: The antiangiogenic effect of an antisense oligodeoxynucleotide (ODN) targeting insulin receptor substrate (IRS)-1 was evaluated on rat corneal neovascularization. METHODS: Eyes with neovessels were treated with subconjunctival injections of IRS-1 antisense oligonucleotide (ASODN), IRS-1 sense ODN (SODN), or PBS. At 8 and 24 hours after the first subconjunctival injection, the expression of IRS-1, VEGF, and IL-1beta mRNA was evaluated. IRS-1 protein levels were also measured at 8 hours by Western blot analysis (n = 4/group). On day 10, corneal neovascularization was quantified in flatmount corneas of rats treated daily from days 4 to 9. RESULTS: On day 10, new vessels covered 95.5% +/- 4% of the corneal area in PBS-treated eyes, 92% +/- 7% in SODN-treated eyes and 59% +/- 20% in ASODN-treated eyes (P < 0.001). In the ASODN-treated group, the expression and synthesis of IRS-1 were significantly downregulated when compared with the control groups. ASODN did not significantly affect the expression of VEGF but significantly decreased the expression of IL-1beta at 24 hours (P = 0.04). CONCLUSIONS: Subconjunctival injections of IRS-1 antisense ODN significantly inhibit rat corneal neovascularization. This effect may be mediated by a downregulation of IL-1beta. IRS-1 proteins may be interesting targets for the regulation of angiogenesis mediated by insulin, hypoxia, or inflammation.
Resumo:
Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.
Resumo:
AIM/HYPOTHESIS: IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS: Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS: GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION: Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.