151 resultados para INFLAMMATORY CYTOKINE PRODUCTION

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reported earlier that purified preparations of sheep fetal hemoglobin, but not adult hemoglobin, in concert with non-stimulatory doses of lipopolysaccharide (LPS) (lipid A), act cooperatively to regulate in vitro production of a number of cytokines, including TNFalpha, TGFbeta and IL-6 from murine and human leukocytes. Following in vivo treatment of mice with the same combination of hemoglobin and LPS, harvested spleen or peritoneal cells showed a similar augmented capacity to release these cytokines into culture supernatants. We report below that genetically cloned gamma-chain of human or sheep fetal hemoglobin, but not cloned alpha- or beta-chains, can produce this cooperative effect, as indeed can HPLC purified, heme-free, gamma-chains derived from cord blood fetal hemoglobin, and that purified haptoglobin completely abolishes the cooperative interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS: First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS: These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown previously that a fetal sheep liver extract (FSLE) containing significant quantities of fetal ovine gamma globin chain (Hbgamma) and LPS injected into aged (>20 months) mice could reverse the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFNgamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. The mechanism(s) behind this change in cytokine production were not previously investigated. We report below that aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+) Treg and so-called Tr3 (CD4(+)TGFbeta(+)), and that their number/function is restored to levels seen in control (8-week-old) mice by FSLE. In addition, on a per cell basis, CD4(+)CD25(-)Treg from aged mice were >4-fold more effective in suppression of proliferation and IL-2 production from ConA-activated lymphoid cells of a pool of CD4(+)CD25(-)T cells from 8-week-old mice than similar cells from young animals, and this suppression by CD25(-)T cells was also ameliorated following FSLE treatment. Infusion of anti-TGFbeta and anti-IL-10 antibodies in vivo altered Treg development following FSLE treatment, and attenuated FSLE-induced alterations in cytokine production profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV) is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica. METHODOLOGY/PRINCIPAL FINDINGS: A new LRV member was identified in four L. aethiopica strains (LRV-Lae). Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique -1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1. CONCLUSIONS/SIGNIFICANCE: In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania) and (Viannia) subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A previously described extract of sheep fetal liver was reported to reverse many of the cytokine changes associated with aging in mice, including an augmented spleen cell ConA-stimulated production of IL-4 and decreased production of IL-2. Similar effects were not seen with adult liver preparations. These changes were observed in various strains of mice, including BALB/c, DBA/2 and C57BL/6, using mice with ages ranging from 8 to 110 weeks. Preliminary characterization of this crude extract showed evidence for the presence of Hb gamma chain, as well as of lipid A of LPS. We show below that purified preparations of sheep fetal Hb, but not adult Hb, in concert with suboptimally stimulating doses of LPS (lipid A), cooperate in the regulation of production of a number of cytokines, including TNFalpha and IL-6, in vitro. Furthermore, isolated fresh spleen or peritoneal cells from animals treated in vivo with the same combination of Hb and LPS, showed an augmented capacity to produce these cytokines on further culture in vitro. Evidence was also obtained for a further interaction between CLP, LPS and fetal Hb itself in this augmented cytokine production. These data suggest that some of the functional activities in the fetal liver extract reported earlier can be explained in terms of a novel immunomodulatory role of a mixture of LPS (lipid A) and fetal Hb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes a form of partial agonism for a CD8+ CTL clone, S15, in which perforin-dependent killing and IFN-gamma production were lost but Fas (APO1 or CD95)-dependent cytotoxicity preserved. Cloned S15 CTL are H-2Kd restricted and specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). The presence of a photoactivatable group in the epitope permitted assessment of TCR-ligand binding by TCR photoaffinity labeling. Selective activation of Fas-dependent killing was observed for a peptide-derivative variant containing a modified photoreactive group. A similar functional response was obtained after binding of the wild-type peptide derivative upon blocking of CD8 participation in TCR-ligand binding. The epitope modification or blocking of CD8 resulted in an > or = 8-fold decrease in TCR-ligand binding. In both cases, phosphorylation of zeta-chain and ZAP-70, as well as calcium mobilization were reduced close to background levels, indicating that activation of Fas-dependent cytotoxicity required weaker TCR signaling than activation of perforin-dependent killing or IFN-gamma production. Consistent with this, we observed that depletion of the protein tyrosine kinase p56(lck) by preincubation of S15 CTL with herbimycin A severely impaired perforin- but not Fas-dependent cytotoxicity. Together with the observation that S15 CTL constitutively express Fas ligand, these results indicate that TCR signaling too weak to elicit perforin-dependent cytotoxicity or cytokine production can induce Fas-dependent cytotoxicity, possibly by translocation of preformed Fas ligand to the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lines of evidences have suggested that T cell activation could be impaired in the tumor environment, a condition referred to as tumor-induced immunosuppression. We have previously shown that tenascin-C, an extracellular matrix protein highly expressed in the tumor stroma, inhibits T lymphocyte activation in vitro, raising the possibility that this molecule might contribute to tumor-induced immunosuppression in vivo. However, the region of the protein mediating this effect has remained elusive. Here we report the identification of the minimal region of tenascin-C that can inhibit T cell activation. Recombinant fragments corresponding to defined regions of the molecule were tested for their ability to inhibit in vitro activation of human peripheral blood T cells induced by anti-CD3 mAbs in combination with fibronectin or IL-2. A recombinant protein encompassing the alternatively spliced fibronectin type III domains of tenascin-C (TnFnIII A-D) vigorously inhibited both early and late lymphocyte activation events including activation-induced TCR/CD8 down-modulation, cytokine production, and DNA synthesis. In agreement with this, full length recombinant tenascin-C containing the alternatively spliced region suppressed T cell activation, whereas tenascin-C lacking this region did not. Using a series of smaller fragments and deletion mutants issued from this region, we have identified the TnFnIII A1A2 domain as the minimal region suppressing T cell activation. Single TnFnIII A1 or A2 domains were no longer inhibitory, while maximal inhibition required the presence of the TnFnIII A3 domain. Altogether, these data demonstrate that the TnFnIII A1A2 domain mediate the ability of tenascin-C to inhibit in vitro T cell activation and provide insights into the immunosuppressive activity of tenascin-C in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone loss secondary to inflammatory bowel diseases (IBD) is largely explained by activated T cells producing cytokines that trigger osteoclastogenesis and accelerate bone resorptionwhile inhibiting bone formation. In IBD, elevated expression of interleukin (IL)-15, a T cell growth factor, plays a central role in T cell activation, pro-inflammatory cytokine production and the development of colitis. We previously reported that IL-15 enhances RANKL-induced osteoclastogenesis and that an IL-15 antagonist, CRB-15, prevents weight and bone loss in a mousemodel of dextran sulfate sodium-induced colitis.We hypothesized that inhibition of IL-15 signalingmight prevent bone loss in IL-10 deficient (IL10−/−) mice, that develop spontaneous bowel inflammation associatedwith osteopeniawhen they are no longer raised under germ-free conditions.Mice received anIL-15 antagonist (CRB-15, 5 μg/day, n=5) or IgG2a (5 μg/day, n=4) fromweek 10 to 14 of age. The severity of colitis was assessed by histology and bowel cytokine gene expression by real time PCR. Bone mass and architecturewere evaluated by ex vivo DXA on femur and micro-computed tomography on femur and vertebra. Bodyweight gainwas similar in the two groups. After 4 weeks, colonwas 29% shorter in CRB-15 treatedmice (p<0.006), a sign of reduced inflammation. Histological analysis indicated a transmural infiltration of inflammatory cells, lymphoepithelial lesions and increased size of villi (histological score=4/6) in IgG2a treated mice, whereas colon from CRB-15 treated mice exhibited mild infiltration of inflammatory cells of the lamina propria, no mucosal damages and a minimal increased size of villi (histological score=1.6/6). Levels of TNFα, IL-17 and IL-6 mRNA in the colon were significantly reduced in CRB-15 treated mice (p<0.04 vs IgG2), indicating a decrease in colon inflammation. CRB-15 improved femur BMD (+10.6% vs IgG2a, p<0.002), vertebral trabecular bone volume fraction (BV/TV, +19.7% vs IgG2a, p<0.05) and thickness (+11.6% vs IgG2a, p<0.02). A modest but not significant increase in trabecular BV/TV was observed at the distal femur. Cortical thicknesswas also higher at themidshaft femur in CRB-15 treatedmice (+8.3% vs IgG2a, p<0.02). In conclusion, we confirm and extend our results about the effects of CRB-15 in colitis. Antagonizing IL-15 may exert favorable effects on intestinal inflammation and prevent bone loss and microarchitecture alterations induced by colitis. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: B. Brounais-Le Royer Grant / Research Support from Novartis Consumer Health Foundation, S. Ferrari-Lacraz: none declared, D. Velin: none declared, X. Zheng: none declared, S. Ferrari: none declared, D. Pierroz: none declared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor receptor 1 (TNFR1) and Toll-like receptors (TLRs) regulate immune and inflammatory responses. Here we show that the TNFR1-associated death domain protein (TRADD) is critical in TNFR1, TLR3 and TLR4 signaling. TRADD deficiency abrogated TNF-induced apoptosis, prevented recruitment of the ubiquitin ligase TRAF2 and ubiquitination of the adaptor RIP1 in the TNFR1 signaling complex, and considerably inhibited but did not completely abolish activation of the transcription factor NF-kappaB and mitogen-activated protein kinases 'downstream' of TNFR1. TRIF-dependent cytokine production induced by the synthetic double-stranded RNA poly(I:C) and lipopolysaccharide was lower in TRADD-deficient mice than in wild-type mice. Moreover, TRADD deficiency inhibited poly(I:C)-mediated RIP1 ubiquitination and activation of NF-kappaB and mitogen-activated protein kinase signaling in fibroblasts but not in bone marrow macrophages. Thus, TRADD is an essential component of TNFR1 signaling and has a critical but apparently cell type-specific function in TRIF-dependent TLR responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les inhibiteurs de la protéase du VIH (IP) constituent une des classes de traitements antirétroviraux parmi les plus utilisés au cours de l'infection par le VIH. Leur utilisation est associée à divers effets secondaires, notamment la dyslipidémie, la résistance à l'insuline, la lipodystrophie et certaines complications cardio-vasculaires. Ces molécules ont également des propriétés anti-tumorales, décrites chez des patients non infectés par le VIH. Pourtant, les mécanismes moléculaires à l'origine de ces effets annexes restent méconnus. Dans ce travail, nous démontrons que les IP, comme le Nelfinavir, le Ritonavir, le Lopinavir, le Saquinavir et l'Atazanavir, entrainent la production d'interleukine-lß (IL-lß), une puissante cytokine pro-inflammatoire, connue pour son rôle central dans les maladies inflammatoires. La sécrétion d'IL-lß requiert la formation de l'inflammasome, un complexe protéique intracellulaire servant de plateforme d'activation de la caspase-1 et, par la suite, à la maturation protéolytique de certaines cytokines, dont l'IL-lß. Dans les macrophages murins en culture primaire, ainsi que dans une lignée de monocytes humains, nous démontrons que les IP augmentent la maturation et la sécrétion de l'IL-lß via l'induction d'un inflammasome dépendant de ASC. De plus, nous établissons que les IP induisent spécifiquement l'activation de AIM2, un inflammasome détectant la présence intracytosolique d'ADN viral ou bactérien. Nos résultats démontrent l'existence d'une nouvelle voie d'activation de l'inflammasome AIM2 par un signal endogène dont la nature reste à définir. Ces données suggèrent que AIM2 pourrait jouer un rôle important dans la promotion de l'activité anti-tumorale ainsi que dans les autres effets annexes observés chez les patients traités par IP. -- HIV protease inhibitors (Pis) are among the most often used classes of antiretroviral drugs for HIV infection. Treatment of patients with HIV-PIs is associated with the development of metabolic side effects including dyslipidemia, insulin resistance, lipodystrophy and cardiovascular complications. In addition, these drugs have been reported to have anti¬tumoral properties in non-infected patients, however the molecular mechanisms causing these off-target effects are still unclear. Here we show that the HIV-PIs, such as Nelfinavir, Ritonavir, Lopinavir, Saquinavir and Atazanavir, activate the production of interleukin-lß (IL-lß), a potent pro-inflammatory cytokine that plays a central role in the pathogenesis of inflammatory diseases. The release of IL-lß depends on the activation of the inflammasome, a multiprotein complex that serves as a platform for caspase-1 activation and subsequent proteolytic maturation of cytokines including IL-lß. We found that in mouse primary macrophages as well as in a human monocytic cell line, the HIV-PIs augment the maturation and secretion of IL-lß by triggering an ASC-dependent inflammasome activation. Moreover, we show that the HIV-PIs specifically engage AIM2, a recently characterized inflammasome -forming protein that was described to detect the cytosolic release of bacterial and viral DNA. Our findings demonstrate a new pathway of activation of the AIM2 inflammasome by a yet to be defined endogenous signal and may suggest a possible role for AIM2 in promoting anti¬tumoral activity and off-target effects observed in HIV-PIs treated patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania parasites have been plaguing humankind for centuries as a range of skin diseases named the cutaneous leishmaniases (CL). Carried in a hematophagous sand fly, Leishmania usually infests the skin surrounding the bite site, causing a destructive immune response that may persist for months or even years. The various symptomatic outcomes of CL range from a benevolent self- healing reddened bump to extensive open ulcerations, resistant to treatment and resulting in life- changing disfiguration. Many of these more aggressive outcomes are geographically isolated within the habitats of certain Neotropical Leishmania species; where about 15% of cases experience metastatic complications. However, despite this correlation, genetic analysis has revealed no major differences between species causing the various disease forms. We have recently identified a cytoplasmic dsRNA virus within metastatic L. guyanensis parasites that acts as a potent innate immunogen capable of worsening lesionai inflammation and prolonging parasite survival. The dsRNA genome of Leishmania RNA virus (LRV) binds and stimulates Toll-Like-Receptor-3 (TLR3), inducing this destructive inflammation, which we speculate as a factor contributing to the development of metastatic disease. This thesis establishes the first experimental model of LRV-mediated leishmanial metastasis and investigates the role of non-TLR3 viral recognition pathways in LRV-mediated pathology. Viral dsRNA can be detected by various non-TLR3 pattern recognition receptors (PRR); two such PRR groups are the RLRs (Retinoic acid-inducible gene 1 like receptors) and the NLRs (nucleotide- binding domain, leucine-rich repeat containing receptors). The RLRs are designed to detect viral dsRNA in the cytoplasm, while the NLRs react to molecular "danger" signals of cell damage, often oligomerizing into molecular scaffolds called "inflammasomes" that activate a potent inflammatory cascade. Interestingly, we found that neither RLR signalling nor the inflammasome pathway had an effect on LRV-mediated pathology. In contrast, we found a dramatic inflammasome independent effect for the NLR family member, NLRP10, where a knockout mouse model showed little evidence of disease. This phenotype was mimicked in an NLR knockout with which NLRP10 is known to interact: NLRC2. As this pathway induces the chronic inflammatory cell lineage TH17, we investigated the role of its key chronic inflammatory cytokine, IL-17A, in human patients infected by L. guyanensis. Indeed, patients infected with LRV+ parasites had a significantly increased level of IL-17A in lesionai biopsies. Interestingly, LRV presence was also associated with a significant decrease in the correlate of protection, IFN-y. This association was repeated in our murine model, where after we were able to establish the first experimental model of LRV-dependent leishmanial metastasis, which was mediated by IL-17A in the absence of IFN-y. Finally, we tested a new inhibitor of IL-17A secretion, SR1001, and reveal its potential as a Prophylactic immunomodulator and potent parasitotoxic drug. Taken together, these findings provide a basis for anti-IL-17A as a feasible therapeutic intervention to prevent and treat the metastatic complications of cutaneous leishmaniasis. -- Les parasites Leishmania infectent l'homme depuis des siècles causant des affections cutanées, appelées leishmanioses cutanées (LC). Le parasite est transmis par la mouche des sables et réside dans le derme à l'endroit de la piqûre. Au niveau de la peau, le parasite provoque une réponse immunitaire destructrice qui peut persister pendant des mois voire des années. Les symptômes de LC vont d'une simple enflure qui guérit spontanément jusqu' à de vastes ulcérations ouvertes, résistantes aux traitements. Des manifestations plus agressives sont déterminées par les habitats géographiques de certaines espèces de Leishmania. Dans ces cas, environ 15% des patients développent des lésions métastatiques. Aucun «facteur métastatique» n'a encore été trouvé à ce jour dans ces espèces. Récemment, nous avons pu identifier un virus résidant dans certains parasites métastatiques présents en Guyane française (appelé Leishmania-virus, ou LV) et qui confère un avantage de survie à son hôte parasitaire. Ce virus active fortement la réponse inflammatoire, aggravant l'inflammation et prolongeant l'infection parasitaire. Afin de diagnostiquer, prévenir et traiter ces lésions, nous nous sommes intéressés à identifier les composants de la voie de signalisation anti-virale, responsables de la persistance de cette inflammation. Cette étude décrit le premier modèle expérimental de métastases de la leishmaniose induites par LV, et identifie plusieurs composants de la voie inflammatoire anti-virale qui facilite la pathologie métastatique. Contrairement à l'homme, les souris de laboratoire infectées par des Leishmania métastatiques (contenant LV, LV+) ne développent pas de lésions métastatiques et guérissent après quelques semaines d'infection. Après avoir analysé un groupe de patients atteints de leishmaniose en Guyane française, nous avons constaté que les personnes infectées avec les parasites métastatiques LV+ avaient des niveaux significativement plus faibles d'un composant immunitaire protecteur important, appelé l'interféron (IFN)-y. En utilisant des souris génétiquement modifiées, incapables de produire de l'IFN-y, nous avons observé de telles métastases. Après inoculation dans le coussinet plantaire de souris IFN-y7" avec des parasites LV+ ou LV-, nous avons démontré que seules les souris infectées avec des leishmanies ayant LV développent de multiples lésions secondaires sur la queue. Comme nous l'avons observé chez l'homme, ces souris sécrètent une quantité significativement élevée d'un composant inflammatoire destructeur, l'interleukine (IL)-17. IL-17 a été incriminée pour son rôle dans de nombreuses maladies inflammatoires chroniques. On a ainsi trouvé un rôle destructif similaire pour l'IL-17 dans la leishmaniose métastatique. Nous avons confirmé ce rôle en abrogeant IL-17 dans des souris IFN-y7- ce qui ralentit l'apparition des métastases. Nous pouvons donc conclure que les métastases de la leishmaniose sont induites par l'IL-17 en absence d'IFN-v. En analysant plus en détails les voies de signalisation anti-virale induites par LV, nous avons pu exclure d'autres voies d'activation de la réponse inflammatoire. Nous avons ainsi démontré que la signalisation par LV est indépendante de la signalisation inflammatoire de type « inflammasome ». En revanche, nous avons pu y lier plusieurs autres molécules, telles que NLRP10 et NLRC2, connues pour leur synergie avec les réponses inflammatoires. Cette nouvelle voie pourrait être la cible pour des médicaments inhibant l'inflammation. En effet, un nouveau médicament qui bloque la production d'IL-17 chez la souris s'est montré prometteur dans notre modèle : il a réduit le gonflement des lésions ainsi que la charge parasitaire, indiquant que la voie anti-virale /inflammatoire est une approche thérapeutique possible pour prévenir et traiter cette infection négligée.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antibody display technology (ADT) such as phage display (PD) has substantially improved the production of monoclonal antibodies (mAbs) and Ab fragments through bypassing several limitations associated with the traditional approach of hybridoma technology. In the current study, we capitalized on the PD technology to produce high affinity single chain variable fragment (scFv) against tumor necrosis factor-alpha (TNF- α), which is a potent pro-inflammatory cytokine and plays important role in various inflammatory diseases and malignancies. To pursue production of scFv antibody fragments against human TNF- α, we performed five rounds of biopanning using stepwise decreased amount of TNF-α (1 to 0.1 μ g), a semi-synthetic phage antibody library (Tomlinson I + J) and TG1 cells. Antibody clones were isolated and selected through enzyme-linked immunosorbent assay (ELISA) screening. The selected scFv antibody fragments were further characterized by means of ELISA, PCR, restriction fragment length polymorphism (RFLP) and Western blot analyses as well as fluorescence microscopy and flow cytometry. Based upon binding affinity to TNF-α , 15 clones were selected out of 50 positive clones enriched from PD in vitro selection. The selected scFvs displayed high specificity and binding affinity with Kd values at nm range to human TNF-α . The immunofluorescence analysis revealed significant binding of the selected scFv antibody fragments to the Raji B lymphoblasts. The effectiveness of the selected scFv fragments was further validated by flow cytometry analysis in the lipopolysaccharide (LPS) treated mouse fibroblast L929 cells. Based upon these findings, we propose the selected fully human anti-TNF-α scFv antibody fragments as potential immunotherapy agents that may be translated into preclinical/clinical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Airway epithelial cells were shown to drive the differentiation of monocytes into dendritic cells (DCs) with a suppressive phenotype. In this study, we investigated the impact of virus-induced inflammatory mediator production on the development of DCs. Monocyte differentiation into functional DCs, as reflected by the expression of CD11c, CD123, BDCA-4, and DC-SIGN and the capacity to activate T cells, was similar for respiratory syncytial virus (RSV)-infected and mock-infected BEAS-2B and A549 cells. RSV-conditioned culture media resulted in a partially mature DC phenotype, but failed to up-regulate CD80, CD83, CD86, and CCR7, and failed to release proinflammatory mediators upon Toll-like receptor (TLR) triggering. Nevertheless, these DCs were able to maintain an antiviral response by the release of Type I IFN. Collectively, these data indicate that the airway epithelium maintains an important suppressive DC phenotype under the inflammatory conditions induced by infection with RSV.