52 resultados para INDUCED TOXICITY
em Université de Lausanne, Switzerland
Resumo:
As most metabolic studies are conducted in male animals, understanding the sex specificity of the underlying molecular pathways has been broadly neglected; for example, whether PPARs elicit sex-dependent responses has not been determined. Here we show that in mice, PPARalpha has broad female-dependent repressive actions on hepatic genes involved in steroid metabolism and immunity. In male mice, this effect was reproduced by the administration of a synthetic PPARalpha ligand. Using the steroid oxysterol 7alpha-hydroxylase cytochrome P4507b1 (Cyp7b1) gene as a model, we elucidated the molecular mechanism of this sex-specific PPARalpha-dependent repression. Initial sumoylation of the ligand-binding domain of PPARalpha triggered the interaction of PPARalpha with GA-binding protein alpha (GABPalpha) bound to the target Cyp7b1 promoter. Histone deacetylase and DNA and histone methylases were then recruited, and the adjacent Sp1-binding site and histones were methylated. These events resulted in loss of Sp1-stimulated expression and thus downregulation of Cyp7b1. Physiologically, this repression conferred on female mice protection against estrogen-induced intrahepatic cholestasis, the most common hepatic disease during pregnancy, suggesting a therapeutic target for prevention of this disease.
Resumo:
The oncologic outcome and the total dose are highly correlated with the treatment by ionizing radiation. The dose increase (total or per fraction) may provoke late-side effects that are potentially irreversible. The radiation-induced CD8 lymphocyte apoptotic value and the molecular modifications within the lymphocyte are capable of predicting the level of risk of developing late-side effects after curative intent radiotherapy. In this review, we present the different blood assays in this setting and discuss the current possibilities of researches, namely those involving the proteomic process.
Resumo:
RESUME L'hyperammonémie est particulièrement toxique pour le cerveau des jeunes patients et entraîne une atrophie corticale, un élargissement des ventricules et des défauts de myélinisation, responsables de retards mentaux et développementaux. Les traitements actuels se limitent à diminuer le plus rapidement possible le taux d'ammoniaque dans l'organisme. L'utilisation de traitements neuroprotecteurs pendant les crises d'hyperammonémie permettrait de contrecarrer les effets neurologiques de l'ammoniaque et de prévenir l'apparition des troubles neurologiques. Au cours de cette thèse, nous avons testé trois stratégies de neuroprotection sur des cultures de cellules en agrégats issues du cortex d'embryons de rats et traitées à l'ammoniaque. - Nous avons tout d'abord testé si l'inhibition de protéines intracellulaires impliquées dans le déclenchement de la mort cellulaire pouvait protéger les cellules de la toxicité de l'ammoniaque. Nous avons montré que L'exposition à l'ammoniaque altérait la viabilité des neurones et des oligodendrocytes, et activait les caspases, la calpaïne et la kinase-5 dépendante des cyclines (cdk5) associée à son activateur p25. Alors que l'inhibition pharmacologique des caspases et de la calpaïne n'a pas permis de protéger les cellules cérébrales, un inhibiteur de la cdk5, appelé roscovitine, a réduit significativement la mort neuronale. L'inhibition de la cdk5 semble donc être une stratégie thérapeutique prometteuse pour prévenir 1es effets toxiques de 1'ammoniaque sur les neurones. - Nous avons ensuite étudié les mécanismes neuroprotecteurs déclenchés par le cerveau en réponse à la toxicité de l'ammoniaque. Nous avons montré que l'ammoniaque induisait la synthèse du facteur neurotrophique ciliaire (CNTF) par les astrocytes, via l'activation de la protéine kinase (MIAPK) p38. D'autre part, l'ajout de CNTF a permis de protéger les oligodendrocytes mais pas les neurones des cultures exposées à l'ammoniaque, via les voies de signalisations JAK/STAT, SAPK/JNK et c-jun. - Dans une dernière partie, nous avons voulu contrecarrer, par l'ajout de créatine, le déficit énergétique cérébral induit par l'ammoniaque. La créatine a permis de protéger des cellules de type astrocytaire mais pas les cellules cérébrales en agrégats. Cette thèse amis en évidence que les stratégies de neuroprotection chez les patients hyperammonémiques nécessiteront de cibler plusieurs voies de signalisation afin de protéger tous les types cellulaires du cerveau. Summary : In pediatric patients, hyperammonemia is mainly caused by urea cycle disorders or other inborn errors of metabolism, and leads to neurological injury with cortical atrophy, ventricular enlargement and demyelination. Children rescued from neonatal hyperammonemia show significant risk of mental retardation and developmental disabilities. The mainstay of therapy is limited to ammonia lowering through dietary restriction and alternative pathway treatments. However, the possibility of using treatments in a neuroprotective goal may be useful to improve the neurological outcome of patients. Thus, the main objective of this work was to investigate intracellular and extracellular signaling pathways altered by ammonia tonicity, so as to identify new potential therapeutic targets. Experiments were conducted in reaggregated developing brain cell cultures exposed to ammonia, as a model for the developing CNS of hyperammonemic young patients. Theses strategies of neuroprotection were tested: - The first strategy consisted in inhibiting intracellular proteins triggering cell death. Our data indicated that ammonia exposure altered the viability of neurons and oligodendrocytes. Apoptosis and proteins involved in the trigger of apoptosis, such as caspases, calpain and cyclin-dependent kinase-5 (cdk5) with its activator p25, were activated by ammonia exposure. While caspases and calpain inhibitors exhibited no protective effects, roscovitine, a cdk5 inhibitor, reduced ammonia-induced neuronal death. This work revealed that inhibition of cdk5 seems a promising strategy to prevent the toxic effects of ammonia on neurons. - The second strategy consisted in mimicking, the endogenous protective mechanisms triggered by ammonia in the brain. Ammonia exposure caused an increase of the ciliary neurotrophic factor (CNTF) expression, through the activation of the p38 mitogen-activated protein kinase (MAPK) in astrocytes. Treatment of cultures exposed to ammonia with exogenous CNTF demonstrated strong protective effects on oligodendrocytes but not on neurons. These protective effects seemed to involve JAK/STAT, SAPK/JNK and c-jun proteins. - The third strategy consisted in preventing the ammonia-induced cerebral energy deficit with creatine. Creatine treatment protected the survival of astrocyte-like cells through MAPKs pathways. In contrast, it had no protective effects in reaggregated developing brain cell cultures exposed to ammonia. The present study suggests that neuroprotective strategies should optimally be directed at multiple targets to prevent ammonia-induced alterations of the different brain cell types.
Resumo:
PURPOSE: Transferrin (Tf) expression is enhanced by aging and inflammation in humans. We investigated the role of transferrin in glial protection. METHODS: We generated transgenic mice (Tg) carrying the complete human transferrin gene on a C57Bl/6J genetic background. We studied human (hTf) and mouse (mTf) transferrin localization in Tg and wild-type (WT) C57Bl/6J mice using immunochemistry with specific antibodies. Müller glial (MG) cells were cultured from explants and characterized using cellular retinaldehyde binding protein (CRALBP) and vimentin antibodies. They were further subcultured for study. We incubated cells with FeCl(3)-nitrilotriacetate to test for the iron-induced stress response; viability was determined by direct counting and measurement of lactate dehydrogenase (LDH) activity. Tf expression was determined by reverse transcriptase-quantitative PCR with human- or mouse-specific probes. hTf and mTf in the medium were assayed by ELISA or radioimmunoassay (RIA), respectively. RESULTS: mTf was mainly localized in retinal pigment epithelium and ganglion cell layers in retina sections of both mouse lines. hTf was abundant in MG cells. The distribution of mTf and hTf mRNA was consistent with these findings. mTf and hTf were secreted into the medium of MG cell primary cultures. Cells from Tg mice secreted hTf at a particularly high level. However, both WT and Tg cell cultures lose their ability to secrete Tf after a few passages. Tg MG cells secreting hTf were more resistant to iron-induced stress toxicity than those no longer secreted hTf. Similarly, exogenous human apo-Tf, but not human holo-Tf, conferred resistance to iron-induced stress on MG cells from WT mice. CONCLUSIONS: hTf localization in MG cells from Tg mice was reminiscent of that reported for aged human retina and age-related macular degeneration, both conditions associated with iron deposition. The role of hTf in protection against toxicity in Tg MG cells probably involves an adaptive mechanism developed in neural retina to control iron-induced stress.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.
Resumo:
Purpose: Sirolimus (SRL) has been used to replace calcineurin inhibitors (CNI) for various indications including CNI-induced toxicity. The aim of this study was to evaluate the efficacy and safety of switching from CNI to SRL in stable renal transplant recipients (RTR) with low grade proteinuria (<1 g/24 h). Methods and materials: Between 2001 and 2007, 41 patients (20 females, 21 males; mean age 47 ± 13) were switched after a median time post-transplantation of 73.5 months (range 0.2-273.2 months). Indications for switch were CNI nephrotoxicity (39%), thrombotic micro-angiopathy (14.6%), post-transplantation cancer (24.4%), CNI neurotoxicity (7.4%), or others (14.6%). Mean follow-up after SRL switch was 23.8±16.3 months. Mean SRL dosage and through levels were 2.4 ± 1.1 mg/day and 8 ± 2.2 ug/l respectively. Immunosuppressive regiments were SRL + mycophenolate mofetil (MMF) (31.7%), SRL + MMF + prednisone (36.58%), SRL + prednisone (19.51%), SRL + Azathioprine (9.75%), or SRL alone (2.43%). Results: Mean creatinine decreased from 164 to 143 μmol/l (p <0.03), mean estimated glomerular filtration rate (eGFR) increased significantly from 50.13 to 55.01 ml/minute (p <0.00001), mean systolic and diastolic blood pressure decreased from 138 to 132 mm Hg (p <0.03) and from 83 to78 mm Hg (p <0.01), but mean proteinuria increased from 0.21 to 0.63 g/24 h (p <0.001). While mean total cholesterolemia didn't increased significantly from 5.09 to 5.56 mmol/l (p = 0.06). The main complications after SRL switch were dermatitis (19.5%), urinary tract infections (24.4%), ankle edema (13.3%), and transient oral ulcers (20%). Acute rejection after the switch occurred in 7.3% of patients (n = 3), and 2 acute rejections were successfully treated with corticosteroids and 1 did not respond to treatment (not related to switch). SRL had to be discontinued in 17% of patients (2 nephrotic syndromes, 2 severe edema, 1 acute rejection, 1 thrombotic micro-angiopathy, and 1 fever). Conclusion: In conclusion, we found that switching from CNI to SRL in stable RTR was safe and associated with a significant improvement of renal function and blood pressure. Known side-effects of SRL led to drug discontinuation in less than 20% of patients and the acute rejection rate was 7.3%. This experience underlines the importance of patient selection before switching to SRL, in particular regarding preswitch proteinuria.
Resumo:
Chronic disorders, such as obesity, diabetes, inflammation, non-alcoholic fatty liver disease and atherosclerosis, are related to alterations in lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPAR)α, PPARβ/δ and PPARγ are involved. These receptors form a subgroup of ligand-activated transcription factors that belong to the nuclear hormone receptor family. This review discusses a selection of novel PPAR functions identified during the last few years. The PPARs regulate processes that are essential for the maintenance of pregnancy and embryonic development. Newly found hepatic functions of PPARα are the mediation of female-specific gene repression and the protection of the liver from oestrogen induced toxicity. PPARα also controls lipid catabolism and is the target of hypolipidaemic drugs, whereas PPARγ controls adipocyte differentiation and regulates lipid storage; it is the target for the insulin sensitising thiazolidinediones used to treat type 2 diabetes. Activation of PPARβ/δ increases lipid catabolism in skeletal muscle, the heart and adipose tissue. In addition, PPARβ/δ ligands prevent weight gain and suppress macrophage derived inflammation. In fact, therapeutic benefits of PPAR ligands have been confirmed in inflammatory and autoimmune diseases, such as encephalomyelitis and inflammatory bowel disease. Furthermore, PPARs promote skin wound repair. PPARα favours skin healing during the inflammatory phase that follows injury, whilst PPARβ/δ enhances keratinocyte survival and migration. Due to their collective functions in skin, PPARs represent a major research target for our understanding of many skin diseases. Taken altogether, these functions suggest that PPARs serve as physiological sensors in different stress situations and remain valuable targets for innovative therapies.
Resumo:
Progresses in pediatric oncology over the last decades have been dramatic and allow current cure rates above 80%. There are mainly due to multicentre clinical trials aiming at optimizing chemotherapy protocols as well as local therapies in a stepwise approach. Most of the new anticancer drugs currently in development are based on targeted therapies, directed to specific targets present only in or on tumor cells, like growth factor receptors, mechanisms involved in proliferation, DNA repair, apoptosis, tumor invasion or angiogenesis. Concerning bone marrow transplantation also, new strategic approaches are in advanced development. They aim at reducing treatment induced toxicity and enhancing efficacy at the same time. This short paper would like to point out these new technologies, which should be known by the general practitioner.
Resumo:
Huntington's disease (HD) is a monogenic neurodegenerative disease that affects the efferent neurons of the striatum. The protracted evolution of the pathology over 15 to 20 years, after clinical onset in adulthood, underscores the potential of therapeutic tools that would aim at protecting striatal neurons. Proteins with neuroprotective effects in the adult brain have been identified, among them ciliary neurotrophic factor (CNTF), which protected striatal neurons in animal models of HD. Accordingly, we have carried out a phase I study evaluating the safety of intracerebral administration of this protein in subjects with HD, using a device formed by a semipermeable membrane encapsulating a BHK cell line engineered to synthesize CNTF. Six subjects with stage 1 or 2 HD had one capsule implanted into the right lateral ventricle; the capsule was retrieved and exchanged for a new one every 6 months, over a total period of 2 years. No sign of CNTF-induced toxicity was observed; however, depression occurred in three subjects after removal of the last capsule, which may have correlated with the lack of any future therapeutic option. All retrieved capsules were intact but contained variable numbers of surviving cells, and CNTF release was low in 13 of 24 cases. Improvements in electrophysiological results were observed, and were correlated with capsules releasing the largest amount of CNTF. This phase I study shows the safety, feasibility, and tolerability of this gene therapy procedure. Heterogeneous cell survival, however, stresses the need for improving the technique.
Resumo:
PURPOSE: To evaluate the rate of tumor recurrence within the irradiated volume after initial low-dose irradiation of limited-stage small-cell lung cancer (SCLC), to assess the tolerance of a sequential combination of low-dose chest irradiation followed by chemotherapy, and to confirm the responsiveness of limited-stage SCLC to low-dose irradiation. METHODS AND MATERIALS: In this pilot study, 26 patients with limited-stage SCLC were treated by first-line 20-Gy thoracic irradiation followed 3 weeks later by chemotherapy (cisplatin, doxorubicin, and etoposide for six cycles). RESULTS: We present our final results with a median follow-up of surviving patients of 7 years. The response rate to this low-dose irradiation was 83%, with an overall response rate to radiochemotherapy of 96% and a median survival of 21 months. No unexpected early or late toxicity was observed. The rate of initial isolated local failure was 8%, which compares favorably with other published series using higher doses of radiochemotherapy. CONCLUSION: An initial chest irradiation of 20 Gy before chemotherapy could be sufficient to reduce the risk of local failure during the time of survival of patients with limited-stage SCLC. Potential advantages of this treatment may be the prevention of resistance mechanisms to radiotherapy induced by preliminary chemotherapy and a reduced radiation-induced toxicity.
Resumo:
Hormone receptors are expressed in more than 75% of breast cancer. Therefore, two prescription modalities of endocrine therapy could be proposed: either sequential or concomitant to breast cancer irradiation. If combined to radiotherapy, is endocrine therapy a radiosensitizer? Does endocrine therapy enhance the risk factor of radio-induced toxicity? Here, we will distinguish the interaction of ionizing radiation combined with therapies targeting oestrogen receptor (REα) from the interaction of ionizing radiation with oestrogen. This review aims at making clear all these items.
Resumo:
BACKGROUND: Digoxin intoxication results in predominantly digestive, cardiac and neurological symptoms. This case is outstanding in that the intoxication occurred in a nonagenarian and induced severe, extensively documented visual symptoms as well as dysphagia and proprioceptive illusions. Moreover, it went undiagnosed for a whole month despite close medical follow-up, illustrating the difficulty in recognizing drug-induced effects in a polymorbid patient. CASE PRESENTATION: Digoxin 0.25 mg qd for atrial fibrillation was prescribed to a 91-year-old woman with an estimated creatinine clearance of 18 ml/min. Over the following 2-3 weeks she developed nausea, vomiting and dysphagia, snowy and blurry vision, photopsia, dyschromatopsia, aggravated pre-existing formed visual hallucinations and proprioceptive illusions. She saw her family doctor twice and visited the eye clinic once until, 1 month after starting digoxin, she was admitted to the emergency room. Intoxication was confirmed by a serum digoxin level of 5.7 ng/ml (reference range 0.8-2 ng/ml). After stopping digoxin, general symptoms resolved in a few days, but visual complaints persisted. Examination by the ophthalmologist revealed decreased visual acuity in both eyes, 4/10 in the right eye (OD) and 5/10 in the left eye (OS), decreased color vision as demonstrated by a score of 1/13 in both eyes (OU) on Ishihara pseudoisochromatic plates, OS cataract, and dry age-related macular degeneration (ARMD). Computerized static perimetry showed non-specific diffuse alterations suggestive of either bilateral retinopathy or optic neuropathy. Full-field electroretinography (ERG) disclosed moderate diffuse rod and cone dysfunction and multifocal ERG revealed central loss of function OU. Visual symptoms progressively improved over the next 2 months, but multifocal ERG did not. The patient was finally discharged home after a 5 week hospital stay. CONCLUSION: This case is a reminder of a complication of digoxin treatment to be considered by any treating physician. If digoxin is prescribed in a vulnerable patient, close monitoring is mandatory. In general, when facing a new health problem in a polymorbid patient, it is crucial to elicit a complete history, with all recent drug changes and detailed complaints, and to include a drug adverse reaction in the differential diagnosis.
Resumo:
This study aimed at identifying clinical factors for predicting hematologic toxicity after radioimmunotherapy with (90)Y-ibritumomab tiuxetan or (131)I-tositumomab in clinical practice. Hematologic data were available from 14 non-Hodgkin lymphoma patients treated with (90)Y-ibritumomab tiuxetan and 18 who received (131)I-tositumomab. The percentage baseline at nadir and 4 wk post nadir and the time to nadir were selected as the toxicity indicators for both platelets and neutrophils. Multiple linear regression analysis was performed to identify significant predictors (P < 0.05) of each indicator. For both platelets and neutrophils, pooled and separate analyses of (90)Y-ibritumomab tiuxetan and (131)I-tositumomab data yielded the time elapsed since the last chemotherapy as the only significant predictor of the percentage baseline at nadir. The extent of bone marrow involvement was not a significant factor in this study, possibly because of the short time elapsed since the last chemotherapy of the 7 patients with bone marrow involvement. Because both treatments were designed to deliver a comparable bone marrow dose, this factor also was not significant. None of the 14 factors considered was predictive of the time to nadir. The R(2) value for the model predicting percentage baseline at nadir was 0.60 for platelets and 0.40 for neutrophils. This model predicted the platelet and neutrophil toxicity grade to within ±1 for 28 and 30 of the 32 patients, respectively. For the 7 patients predicted with grade I thrombocytopenia, 6 of whom had actual grade I-II, dosing might be increased to improve treatment efficacy. The elapsed time since the last chemotherapy can be used to predict hematologic toxicity and customize the current dosing method in radioimmunotherapy.
Resumo:
OBJECTIVE To establish the role of the transcription factor Pax4 in pancreatic islet expansion and survival in response to physiological stress and its impact on glucose metabolism, we generated transgenic mice conditionally and selectively overexpressing Pax4 or a diabetes-linked mutant variant (Pax4R129 W) in β-cells. RESEARCH DESIGN AND METHODS Glucose homeostasis and β-cell death and proliferation were assessed in Pax4- or Pax4R129 W-overexpressing transgenic animals challenged with or without streptozotocin. Isolated transgenic islets were also exposed to cytokines, and apoptosis was evaluated by DNA fragmentation or cytochrome C release. The expression profiles of proliferation and apoptotic genes and β-cell markers were studied by immunohistochemistry and quantitative RT-PCR. RESULTS Pax4 but not Pax4R129 W protected animals against streptozotocin-induced hyperglycemia and isolated islets from cytokine-mediated β-cell apoptosis. Cytochrome C release was abrogated in Pax4 islets treated with cytokines. Interleukin-1β transcript levels were suppressed in Pax4 islets, whereas they were increased along with NOS2 in Pax4R129 W islets. Bcl-2, Cdk4, and c-myc expression levels were increased in Pax4 islets while MafA, insulin, and GLUT2 transcript levels were suppressed in both animal models. Long-term Pax4 expression promoted proliferation of a Pdx1-positive cell subpopulation while impeding insulin secretion. Suppression of Pax4 rescued this defect with a concomitant increase in pancreatic insulin content. CONCLUSIONS Pax4 protects adult islets from stress-induced apoptosis by suppressing selective nuclear factor-κB target genes while increasing Bcl-2 levels. Furthermore, it promotes dedifferentiation and proliferation of β-cells through MafA repression, with a concomitant increase in Cdk4 and c-myc expression.