5 resultados para ICL
em Université de Lausanne, Switzerland
Resumo:
Expression by Saccharomyces cerevisiae of a polyhydroxyalkanoate (PHA) synthase modified at the carboxy end by the addition of a peroxisome targeting signal derived from the last 34 amino acids of the Brassica napus isocitrate lyase (ICL) and containing the terminal tripeptide Ser-Arg-Met resulted in the synthesis of PHA. The ability of the terminal peptide Ser-Arg-Met and of the 34-amino-acid peptide from the B. napus ICL to target foreign proteins to the peroxisome of S. cerevisiae was demonstrated with green fluorescent protein fusions. PHA synthesis was found to be dependent on the presence of both the enzymes generating the beta-oxidation intermediate 3-hydroxyacyl-coenzyme A (3-hydroxyacyl-[CoA]) and the peroxin-encoding PEX5 gene, demonstrating the requirement for a functional peroxisome and a beta-oxidation cycle for PHA synthesis. Using a variant of the S. cerevisiae beta-oxidation multifunctional enzyme with a mutation inactivating the B domain of the R-3-hydroxyacyl-CoA dehydrogenase, it was possible to modify the PHA monomer composition through an increase in the proportion of the short-chain monomers of five and six carbons.
Resumo:
Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the specific glyoxylate cycle enzyme activities might be induced to reallocate carbon obtained from the PBM degradation. In order to evaluate as well the carbon metabolism of the nitrogen-fixing Bradyrhizobium japonicum endosymbiotic bacteroids during nodular senescence, their glyoxylate cycle activities were also investigated. To this end, partial DNA sequences were isolated from their icl and ms genes, but the corresponding mRNAs were not detected in the microorganisms. It was also observed that the bacteroid ICL and MS activities were negligible during nodular senescence. This suggests that glyoxylate cycle activities are not reinitiated in the bacteroids under these physiological conditions. In case the microorganisms nevertheless feed on the PBM degradation products, this might occur via the citric acid cycle exclusively.
Resumo:
Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the specific glyoxylate cycle enzyme activities might be induced to reallocate carbon obtained from the PBM degradation. In order to evaluate as well the carbon metabolism of the nitrogen-fixing Bradyrhizobium japonicum endosymbiotic bacteroids during nodular senescence, their glyoxylate cycle activities were also investigated. To this end, partial DNA sequences were isolated from their icl and ms genes, but the corresponding mRNAs were not detected in the microorganisms. It was also observed that the bacteroid ICL and MS activities were negligible during nodular senescence. This suggests that glyoxylate cycle activities are not reinitiated in the bacteroids under these physiological conditions. In case the microorganisms nevertheless feed on the PBM degradation products, this might occur via the citric acid cycle exclusively.
Resumo:
During our study of the glyoxylate cycle in soybean (Glycine max. L. var. Maple arrow), two mitochondrial and three cytosolic aconitase molecular species (EC 4.2.1.3) were detected, designated as M1, M2, C1, C2 and C3 isoforms, respectively, according to their intracellular locations and electrophoretic mobilities. Using the glyoxylate cycle marker enzymes isocitrate lyase (ICL, EC 4.1.3.1) and malate synthase (MS, EC 4.1.3.2), the activity of this pathway providing the essential link between P-oxidation and gluconeogenesis was confirmed during germination (cotyledons) and senescence (leaves). It was then established that, in both cases, the activity of the CI aconitase isoform developed concomitantly with the transcription and translation levels of the icl and ms genes. This strongly suggests that C1 aconitase is constitutive of the glyoxylate cycle. In addition, the same isoform was found to be active during pathogenic attack as well (hypocotyls). It might be assumed that in such a case the glyoxylate cycle is reinitiated as a part of a carbon reallocation system feeding on the diseased tissue cellular components.
Resumo:
PURPOSE: To assess the agreement and repeatability of horizontal white-to-white (WTW) and horizontal sulcus-to-sulcus (STS) diameter measurements and use these data in combination with available literature to correct for interdevice bias in preoperative implantable collamer lens (ICL) size selection. DESIGN: Interinstrument reliability and bias assessment study. METHODS: A total of 107 eyes from 56 patients assessed for ICL implantation at our institution were included in the study. This was a consecutive series of all patients with suitable available data. The agreement and bias between WTW (measured with the Pentacam and BioGraph devices) and STS (measured with the HiScan device) were estimated. RESULTS: The mean spherical equivalent was -8.93 ± 5.69 diopters. The BioGraph measures of WTW were wider than those taken with the Pentacam (bias = 0.26 mm, P < .01), and both horizontal WTW measures were wider than the horizontal STS measures (bias >0.91 mm, P < .01). The repeatability (Sr) of STS measured with the HiScan was 0.39 mm, which was significantly reduced (Sr = 0.15 mm) when the average of 2 measures was used. Agreement between the horizontal WTW measures and horizontal STS estimates when bias was accounted for was г = 0.54 with the Pentacam and г = 0.64 with the BioGraph. CONCLUSIONS: Large interdevice bias was observed for WTW and STS measures. STS measures demonstrated poor repeatability, but the average of repeated measures significantly improved repeatability. In order to conform to the US Food and Drug Administration's accepted guidelines for ICL sizing, clinicians should be aware of and account for the inconsistencies between devices.