37 resultados para Hydroxybutyrate-hydroxyvalerate Copolymers

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil-grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%-1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES: Gamma-hydroxybutyrate (GHB) was originally introduced as an anesthetic but was first abused by bodybuilders and then became a recreational or club drug.1 Sodium salt of GHB is currently used for the treatment of cataplexy in patients with narcolepsy. The mode of action and metabolism of GHB is not well understood. GHB stimulates growth hormone release in humans and induces weight loss in treated patients, suggesting an unexplored metabolic effect. In different experiments the effect of GHB administration on central (cerebral cortex) and peripheral (liver) biochemical processes involved in the metabolism of the drug, as well as the effects of the drug on metabolism, were evaluated in mice. DESIGN: C57BL/6J, gamma-aminobutyric acid B (GABAB) knockout and obese (ob/ob) mice were acutely or chronically treated with GHB at 300 mg/kg. MEASUREMENTS AND RESULTS: Respiratory ratio decreased under GHB treatment, independent of food intake, suggesting a shift in energy substrate from carbohydrates to lipids. GHB-treated C57BL/6J and GABAB null mice but not ob/ob mice gained less weight than matched controls. GHB dramatically increased the corticosterone level but did not affect growth hormone or prolactin. Metabolome profiling showed that an acute high dose of GHB did not increase the brain GABA level. In the brain and the liver, GHB was metabolized into succinic semialdehyde by hydroxyacid-oxoacid transhydrogenase. Chronic administration decreased glutamate, s-adenosylhomocysteine, and oxidized gluthathione, and increased omega-3 fatty acids. CONCLUSIONS: Our findings indicate large central and peripheral metabolic changes induced by GHB with important relevance to its therapeutic use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentrations of 3-beta-hydroxybutyrate (3HB) in femoral blood, urine, vitreous humor as well as pericardial and cerebrospinal fluids were retrospectively examined in a series of medico-legal autopsies, which included cases of diabetic ketoacidosis, hypothermia fatalities without ethanol in blood, bodies presenting mild decompositional changes, and sudden deaths in chronic alcoholics. Similar increases in 3HB concentrations were observed in blood, vitreous, and pericardial fluid, irrespective of the cause of death, suggesting that pericardial fluid and vitreous can both be used as alternatives to blood for postmortem 3HB determination. Urine 3HB levels were higher than blood values in most cases. Cerebrospinal fluid 3HB levels were generally lower than concentrations in blood and proved to be diagnostic of underlying metabolic disturbances only when significant increases occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentrations of 3-beta-hydroxybutyrate (3HB) in blood and two liver samples were retrospectively examined in a series of medicolegal autopsies. These cases included diabetic ketoacidosis, nondiabetic individuals presenting moderate to severe decompositional changes and nondiabetic medicolegal cases privy of decompositional changes. 3HB concentrations in liver sample homogenates correlate well with blood values in all examined groups. Additionally, decompositional changes were not associated with increases in blood and liver 3HB levels. These results suggest that 3HB can be reliably measured in liver homogenates when blood is not available at autopsy. Furthermore, they suggest that metabolic disturbances potentially leading or contributing to death may be objectified through liver 3HB determination even in decomposed bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are bacterial polyesters having the properties of biodegradable thermoplastics and elastomers. Synthesis of PHAs has been demonstrated in transgenic plants. Both polyhydroxybutyrate and the co-polymer poly(hydroxybutyrate-co-hydroxyvalerate) have been synthesized in the plastids of Arabidopsis thaliana and Brassica napus. Furthermore, a range of medium-chain-length PHAs has also been produced in plant peroxisomes. Development of agricultural crops to produce PHA on a large scale and at low cost will be a challenging task requiring a coordinated and stable expression of several genes. Novel extraction methods designed to maximize the use of harvested plants for PHA, oil, carbohydrate, and feed production will be needed. In addition to their use as plastics, PHAs can also be used to modify fiber properties in plants such as cotton. Furthermore, PHA can be exploited as a novel tool to study the carbon flux through various metabolic pathways, such as the fatty acid beta-oxidation cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, there is an increased interest in γ-hydroxybutyric acid (GHB) and its effects onsleep. This compound, sometimes referred to as 'rape drug', was recently approved as atreatment for the sleep disorder narcolepsy. Although several studies suggest that GHBinduces slow-wave sleep duration and improves sleep quality by increasing EEG slow-waveactivity, others question its ability to induce physiological sleep. GHB's mechanism of actionis still unclear, although in vivo and in vitro it seems to act at high doses as a low-affinityagonist of GABAB receptors. Furthermore, the role GABAB receptors play in sleep and theelectroencephalogram (EEG) is largely unknown.The aim of this project was therefore to investigate the effects of GHB on sleep and EEG, theinvolvement of GABAB receptors in mediating these effects, as well as the intrinsic role ofeach GABAB receptor subunit in the regulation of sleep. Thus, we administered GHB andbaclofen (BAC, a high-affinity agonist at GABAB receptor) to mice lacking the different GABABreceptor subunits and to healthy human volunteers.Our results, both in mice and humans, showed that GHB produced slow waves exclusivelythrough the stimulation of GABAB receptors, but did not induce physiological sleepnecessary to reduce sleep need and to increase cognitive performance. Unlike GHB, BACaffected the homeostatic regulation of sleep (sleep need) and induced a delayedhypersomnia. Finally, GABAB receptor and its subunits seem to play an important role insleep and in particular its circadian distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-hydroxybutyrate concentrations were determined in blood and synovial fluid in a series of medico-legal cases including hypothermia fatalities, individuals found dead in a cold environment and non-hypothermia cases with various, non-traumatic causes of death. Hypothermia was considered to be the cause of death according to circumstantial elements indicating exposure to cold, autopsy findings, biochemical investigation results and exclusion of other causes of death. The intention of this study was to characterize β-hydroxybutyrate distribution in synovial fluid and assess its usefulness for the postmortem diagnosis of antemortem abnormalities in blood β-hydroxybutyrate levels. Unenhanced CT scans, autopsies, histology, neuropathology, toxicology, and biochemistry were systematically performed. Within the limited number of subjects included in the study, the results indicate that abnormalities in antemortem β-hydroxybutyrate blood levels, as may be observed in hypothermia fatalities, are reflected in postmortem synovial fluid values. These preliminary findings notwithstanding, synovial fluid analysis to determine β-hydroxybutyrate is unlikely to be generally applied due to the more invasive collection technique it requires and could be limited to special cases in which biological fluids systematically collected upon autopsy are unavailable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the hypothesis of Traub, also known as the 'formula of Traub', postmortem values of glucose and lactate found in the cerebrospinal fluid or vitreous humor are considered indicators of antemortem blood glucose levels. However, because the lactate concentration increases in the vitreous and cerebrospinal fluid after death, some authors postulated that using the sum value to estimate antemortem blood glucose levels could lead to an overestimation of the cases of glucose metabolic disorders with fatal outcomes, such as diabetic ketoacidosis. The aim of our study, performed on 470 consecutive forensic cases, was to ascertain the advantages of the sum value to estimate antemortem blood glucose concentrations and, consequently, to rule out fatal diabetic ketoacidosis as the cause of death. Other biochemical parameters, such as blood 3-beta-hydroxybutyrate, acetoacetate, acetone, glycated haemoglobin and urine glucose levels, were also determined. In addition, postmortem native CT scan, autopsy, histology, neuropathology and toxicology were performed to confirm diabetic ketoacidosis as the cause of death. According to our results, the sum value does not add any further information for the estimation of antemortem blood glucose concentration. The vitreous glucose concentration appears to be the most reliable marker to estimate antemortem hyperglycaemia and, along with the determination of other biochemical markers (such as blood acetone and 3-beta-hydroxybutyrate, urine glucose and glycated haemoglobin), to confirm diabetic ketoacidosis as the cause of death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the role of the transcription factor peroxisome proliferator-activated receptor (PPAR) beta/delta in liver. Here we set out to better elucidate the function of PPARbeta/delta in liver by comparing the effect of PPARalpha and PPARbeta/delta deletion using whole genome transcriptional profiling and analysis of plasma and liver metabolites. In fed state, the number of genes altered by PPARalpha and PPARbeta/delta deletion was similar, whereas in fasted state the effect of PPARalpha deletion was much more pronounced, consistent with the pattern of gene expression of PPARalpha and PPARbeta/delta. Minor overlap was found between PPARalpha- and PPARbeta/delta-dependent gene regulation in liver. Pathways upregulated by PPARbeta/delta deletion were connected to innate immunity and inflammation. Pathways downregulated by PPARbeta/delta deletion included lipoprotein metabolism and various pathways related to glucose utilization, which correlated with elevated plasma glucose and triglycerides and reduced plasma cholesterol in PPARbeta/delta-/- mice. Downregulated genes that may underlie these metabolic alterations included Pklr, Fbp1, Apoa4, Vldlr, Lipg, and Pcsk9, which may represent novel PPARbeta/delta target genes. In contrast to PPARalpha-/- mice, no changes in plasma free fatty acid, plasma beta-hydroxybutyrate, liver triglycerides, and liver glycogen were observed in PPARbeta/delta-/- mice. Our data indicate that PPARbeta/delta governs glucose utilization and lipoprotein metabolism and has an important anti-inflammatory role in liver. Overall, our analysis reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse liver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glut-2 is a low-affinity transporter present in the plasma membrane of pancreatic beta-cells, hepatocytes and intestine and kidney absorptive epithelial cells of mice. In beta-cells, Glut-2 has been proposed to be active in the control of glucose-stimulated insulin secretion (GSIS; ref. 2), and its expression is strongly reduced in glucose-unresponsive islets from different animal models of diabetes. However, recent investigations have yielded conflicting data on the possible role of Glut-2 in GSIS. Whereas some reports have supported a specific role for Glut-2 (refs 5,6), others have suggested that GSIS could proceed normally even in the presence of low or almost undetectable levels of this transporter. Here we show that homozygous, but not heterozygous, mice deficient in Glut-2 are hyperglycaemic and relatively hypo-insulinaemic and have elevated plasma levels of glucagon, free fatty acids and beta-hydroxybutyrate. In vivo, their glucose tolerance is abnormal. In vitro, beta-cells display loss of control of insulin gene expression by glucose and impaired GSIS with a loss of first phase but preserved second phase of secretion, while the secretory response to non-glucidic nutrients or to D-glyceraldehyde is normal. This is accompanied by alterations in the postnatal development of pancreatic islets, evidenced by an inversion of the alpha- to beta-cell ratio. Glut-2 is thus required to maintain normal glucose homeostasis and normal function and development of the endocrine pancreas. Its absence leads to symptoms characteristic of non-insulin-dependent diabetes mellitus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. METHODS: Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. RESULTS: Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. CONCLUSIONS: Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isopropyl alcohol (IPA) is widely used as an industrial solvent and cleaning fluid. After ingestion or absorption, IPA is converted into acetone by alcohol dehydrogenase. However, in ketosis, acetone can be reduced to IPA. The aim of this study was to investigate blood IPA and acetone concentrations in a series of 400 medico-legal autopsies, including cases of diabetic ketoacidosis, hypothermia and alcohol misuse-related deaths, to illustrate the extent of ketosis at the time of death. Vitreous glucose, blood 3-β-hydroxybutyrate (3HB) and acetoacetate (AcAc) concentrations were also determined systematically. Additionally, vitreous and urine IPA, acetone, 3HB and AcAc concentrations as well as other biochemical markers, including glycated hemoglobin and carbohydrate-deficient transferrin (CDT) were also determined in selected cases. The results of this study indicate that ketosis is characterized by the presence of IPA resulting from the acetone metabolism and that IPA can be detected in several substrates. These findings confirm the importance of the systematic determination of IPA and acetone levels that is used to quantify biochemical disturbances and the importance of ketosis at the time of death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postmortem angiography is becoming increasingly essential in forensic pathology as an adjunct to conventional autopsy. Despite the numerous advantages of this technique, some questions have been raised regarding the influence of the contrast agent injected on the results of toxicological and biochemical analyses. The aim of this study was to investigate the effect of the injection of the contrast agent Angiofil®, mixed with paraffin oil, on the results of postmortem biochemical investigations performed on vitreous humor. Postmortem biochemical investigations were performed on vitreous samples collected from bodies that had undergone postmortem angiography (n=50) and from a control group (n=50). Two vitreous samples were analyzed for each group and the results compared. Glucose, urea, creatinine, 3-β-hydroxybutyrate, sodium and chloride were tested. Different values were observed between the first and second samples in each group. However, these differences were not clinically relevant, suggesting that the injection of this contrast agent mixture does not modify the concentration of the analyzed substances in the vitreous humor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants naturally produce the lipid-derived polyester cutin, which is found in the plant cuticle that is deposited at the outermost extracellular matrix of the epidermis covering nearly all aboveground tissues. Being at the interface between the cell and the external environment, cutin and the cuticle play important roles in the protection of plants from several stresses. A number of enzymes involved in the synthesis of cutin monomers have recently been identified, including several P450s and one acyl-CoA synthetase, thus representing the first steps toward the understanding of polyester formation and, potentially, polyester engineering to improve the tolerance of plants to stresses, such as drought, and for industrial applications. However, numerous processes underlying cutin synthesis, such as a controlled polymerization, still remain elusive. Suberin is a second polyester found in the extracellular matrix, most often synthesized in root tissues and during secondary growth. Similar to cutin, the function of suberin is to seal off the respective tissue to inhibit water loss and contribute to resistance to pathogen attack. Being the main constituent of cork, suberin is a plant polyester that has already been industrially exploited. Genetic engineering may be worth exploring in order to change the polyester properties for either different applications or to increase cork production in other species. Polyhydroxyalkanoates (PHAs) are attractive polyesters of 3-hydroxyacids because of their properties as bioplastics and elastomers. Although PHAs are naturally found in a wide variety of bacteria, biotechnology has aimed at producing these polymers in plants as a source of cheap and renewable biodegradable plastics. Synthesis of PHA containing various monomers has been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modified in order to achieve this, including the isoprenoid pathway, the fatty acid biosynthetic pathway, and the fatty acid β-oxidation pathway. PHA synthesis has been demonstrated in a number of plants, including monocots and dicots, and up to 40% PHA per gram dry weight has been demonstrated in Arabidopsis thaliana. Despite some successes, production of PHA in crop plants remains a challenging project. PHA synthesis at high level in vegetative tissues, such as leaves, is associated with chlorosis and reduced growth. The challenge for the future is to succeed in synthesis of PHA copolymers with a narrow range of monomer compositions, at levels that do not compromise plant productivity. This goal will undoubtedly require a deeper understanding of plant biochemical pathways and how carbon fluxes through these pathways can be manipulated, areas where plant "omics" can bring very valuable contributions.