79 resultados para Hydroxy aluminium polycation
em Université de Lausanne, Switzerland
Resumo:
Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta with unknown aetiology. 6-Hydroxydopamine (6-OHDA) treatment of neuronal cells is an established in vivo model for mimicking the effect of oxidative stress found in PD brains. We examined the effects of 6-OHDA treatment on human neuroblastoma cells (SH-SY5Y) and primary mesencephalic cultures. Using a reverse arbitrarily primed polymerase chain reaction (RAP-PCR) approach we generated reproducible genetic fingerprints of differential expression levels in cell cultures treated with 6-OHDA. Of the resulting sequences, 23 showed considerable homology to known human coding sequences. The results of the RAP-PCR were validated by reverse transcription PCR, real-time PCR and, for selected genes, by Western blot analysis and immunofluorescence. In four cases, [tomoregulin-1 (TMEFF-1), collapsin response mediator protein 1 (CRMP-1), neurexin-1, and phosphoribosylaminoimidazole synthetase (GART)], a down-regulation of mRNA and protein levels was detected. Further studies will be necessary on the physiological role of the identified proteins and their impact on pathways leading to neurodegeneration in PD.
Resumo:
A two-step high-performance liquid chromatography method is described, using a CN column and an alpha 1-acid glycoprotein column, which allows the measurement of the enantiomers of the hydroxy metabolites of trimipramine in plasma of trimipramine-treated patients. Of the four patients analyzed, three showed approximately equimolar concentrations of the (D)- and (L)-enantiomers of the hydroxy metabolites (2-hydroxy-trimipramine and 2-hydroxy desmethyltrimipramine), and one was found to have roughly twice as much of the (L)-form and of the (D)-form of 2-hydroxy trimipramine and 2-hydroxy desmethyltrimipramine. From the data available on the pharmacological effects of the enantiomers of trimipramine, it is postulated that this interindividual variability in its pharmacokinetics is another factor that could contribute to the interindividual variability in its pharmacodynamics.
Resumo:
Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.
Resumo:
Tamoxifen (tam) is a widely used endocrine therapy in the treatment of early and advanced stage breast cancer in women and men. It is a pro-drug having weak affinity with the estrogen receptor and needs to be converted to its main metabolite, endoxifen (endox), to have full anticancer activity. Cytochrome 2D6 (CYP2D6) plays a major role in the metabolism of tamoxifen to endoxifen. It is genetically highly polymorphic and its activity influences profoundly the synthesis of endoxifen and potentially the efficacy of tamoxifen treatment. Genotyping is currently the most widely used approach in studies and also in clinical practice to categorize patients as poor- (PM), intermediate- (IM), extensive- (EM) and ultra rapid-metabolizers (UM). Some clinicians already use genotyping in order to tailor the endocrine therapy of their patients. Owing to the large inter-individual variations in concentrations of the active moitey due to genetic and non-genetic influences renders the predictive value of the test uncertain for an individual patient. A significant number of patients classified as EM or IM by genotyping have indeed relatively low endoxifen levels similar to PMs1. This suggests that genotyping is probably not the opti ma l meth o d f or predi cti ng end oxif en l evels.
Resumo:
Dans les dernières années du 20ème siècle, l'aluminium a fait l'objet de beaucoup de communications outrancières et divergentes cautionnées par des scientifiques et des organismes faisant autorité. En 1986, la société PECHINEY le décrète perpétuel tel le mouvement « L'aluminium est éternel. Il est recyclable indéfiniment sans que ses propriétés soient altérées », ce qui nous avait alors irrité. Peu de temps après, en 1990, une communication tout aussi outrancière et irritante d'une grande organisation environnementale, le World Wild Fund, décrète que « le recyclage de l'aluminium est la pire menace pour l'environnement. Il doit être abandonné ». C'est ensuite à partir de la fin des années 1990, l'explosion des publications relatives au développement durable, le bien mal nommé. Au développement, synonyme de croissance obligatoire, nous préférons société ou organisation humaine et à durable, mauvaise traduction de l'anglais « sustainable », nous préférons supportable : idéalement, nous aurions souhaité parler de société durable, mais, pour être compris de tous, nous nous sommes limités à parler dorénavant de développement supportable. Pour l'essentiel, ces publications reconnaissent les très graves défauts de la métallurgie extractive de l'aluminium à partir du minerai et aussi les mérites extraordinaires du recyclage de l'aluminium puisqu'il représente moins de 10% de la consommation d'énergie de la métallurgie extractive à partir du minerai (on verra que c'est aussi moins de 10% de la pollution et du capital). C'est précisément sur le recyclage que se fondent les campagnes de promotion de l'emballage boisson, en Suisse en particulier. Cependant, les données concernant le recyclage de l'aluminium publiées par l'industrie de l'aluminium reflètent seulement en partie ces mérites. Dans les années 1970, les taux de croissance de la production recyclée sont devenus plus élevés que ceux de la production électrolytique. Par contre, les taux de recyclage, établis à indicateur identique, sont unanimement tous médiocres comparativement à d'autres matériaux tels le cuivre et le fer. Composante de l'industrie de l'aluminium, le recyclage bénéficie d'une image favorable auprès du grand public, démontrant le succès des campagnes de communication. A l'inverse, à l'intérieur de l'industrie de l'aluminium, c'est une image dévalorisée. Les opinions émises par tous les acteurs, commerçants, techniciens, dirigeants, encore recueillies pendant ce travail, sont les suivantes : métier de chiffonnier, métier misérable, métier peu technique mais très difficile (un recycleur 15 d'aluminium n'a-t-il pas dit que son métier était un métier d'homme alors que celui du recycleur de cuivre était un jeu d'enfant). A notre avis ces opinions appartiennent à un passé révolu qu'elles retraduisent cependant fidèlement car le recyclage est aujourd'hui reconnu comme une contribution majeure au développement supportable de l'aluminium. C'est bien pour cette raison que, en 2000, l'industrie de l'aluminium mondiale a décidé d'abandonner le qualificatif « secondaire » jusque là utilisé pour désigner le métal recyclé. C'est en raison de toutes ces données discordantes et parfois contradictoires qu'a débuté ce travail encouragé par de nombreuses personnalités. Notre engagement a été incontestablement facilité par notre connaissance des savoirs indispensables (métallurgie, économie, statistiques) et surtout notre expérience acquise au cours d'une vie professionnelle menée à l'échelle mondiale dans (recherche et développement, production), pour (recherche, développement, marketing, stratégie) et autour (marketing, stratégie de produits connexes, les ferro-alliages, et concurrents, le fer) de l'industrie de l'aluminium. Notre objectif est de faire la vérité sur le recyclage de l'aluminium, un matériau qui a très largement contribué à faire le 20ème siècle, grâce à une revue critique embrassant tous les aspects de cette activité méconnue ; ainsi il n'y a pas d'histoire du recyclage de l'aluminium alors qu'il est plus que centenaire. Plus qu'une simple compilation, cette revue critique a été conduite comme une enquête scientifique, technique, économique, historique, socio-écologique faisant ressortir les faits principaux ayant marqué l'évolution du recyclage de l'aluminium. Elle conclut sur l'état réel du recyclage, qui se révèle globalement satisfaisant avec ses forces et ses faiblesses, et au-delà du recyclage sur l'adéquation de l'aluminium au développement supportable, adéquation largement insuffisante. C'est pourquoi, elle suggère les thèmes d'études intéressant tous ceux scientifiques, techniciens, historiens, économistes, juristes concernés par une industrie très représentative de notre monde en devenir, un monde où la place de l'aluminium dépendra de son aptitude à satisfaire les critères du développement supportable. ABSTRACT Owing to recycling, the aluminium industry's global energetic and environmental prints are much lower than its ore extractive metallurgy's ones. Likewise, recycling will allow the complete use of the expected avalanche of old scraps, consequently to the dramatic explosion of aluminium consumption since the 50's. The recycling state is characterized by: i) raw materials split in two groups :one, the new scrap, internal and prompt, proportional to semi-finished and finished products quantities, exhibits a fairly good and regular quality. The other, the old scrap, proportional to the finished products arrivïng at their end-of--life, about 22 years later on an average, exhibits a variable quality depending on the collect mode. ii) a poor recycling rate, near by that of steel. The aluminium industry generates too much new internal scrap and doesn't collect all the availa~e old scrap. About 50% of it is not recycled (when steel is recycling about 70% of the old scrap flow). iii) recycling techniques, all based on melting, are well handled in spite of aluminium atiiníty to oxygen and the practical impossibility to purify aluminium from any impurity. Sorting and first collect are critical issues before melting. iv) products and markets of recycled aluminium :New scraps have still been recycled in the production lines from where there are coming (closed loop). Old scraps, mainly those mixed, have been first recycled in different production lines (open loop) :steel deoxidation products followed during the 30's, with the development of the foundry alloys, by foundry pieces of which the main market is the automotive industry. During the 80's, the commercial development of the beverage can in North America has permitted the first old scrap recycling closed loop which is developing. v) an economy with low and erratic margins because the electrolytic aluminium quotation fixes scrap purchasing price and recycled aluminium selling price. vi) an industrial organisation historically based on the scrap group and the loop mode. New scrap is recycled either by the transformation industry itself or by the recycling industry, the remelter, old scrap by the refiner, the other component of the recycling industry. The big companies, the "majors" are often involved in the closed loop recycling and very seldom in the open loop one. To-day, aluminium industry's global energetic and environmental prints are too unbeara~ e and the sustainaЫe development criteria are not fully met. Critical issues for the aluminium industry are to better produce, to better consume and to better recycle in order to become a real sustainaЫe development industry. Specific issues to recycling are a very efficient recycling industry, a "sustainaЫe development" economy, a complete old scrap collect favouring the closed loop. Also, indirectly connected to the recycling, are a very efficient transformation industry generating much less new scrap and a finished products industry delivering only products fulfilling sustainaЫe development criteria.
Resumo:
Since 2004, cannabis has been prohibited by the World Anti-Doping Agency for all sports competitions. In the years since then, about half of all positive doping cases in Switzerland have been related to cannabis consumption. In doping urine analysis, the target analyte is 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH), the cutoff being 15 ng/mL. However, the wide urinary detection window of the long-term metabolite of Delta(9)-tetrahydrocannabinol (THC) does not allow a conclusion to be drawn regarding the time of consumption or the impact on the physical performance. The purpose of the present study on light cannabis smokers was to evaluate target analytes with shorter urinary excretion times. Twelve male volunteers smoked a cannabis cigarette standardized to 70 mg THC per cigarette. Plasma and urine were collected up to 8 h and 11 days, respectively. Total THC, 11-hydroxy-Delta(9)-tetrahydrocannabinol (THC-OH), and THC-COOH were determined after hydrolysis followed by solid-phase extraction and gas chromatography/mass spectrometry. The limits of quantitation were 0.1-1.0 ng/mL. Eight puffs delivered a mean THC dose of 45 mg. Plasma levels of total THC, THC-OH, and THC-COOH were measured in the ranges 0.2-59.1, 0.1-3.9, and 0.4-16.4 ng/mL, respectively. Peak concentrations were observed at 5, 5-20, and 20-180 min. Urine levels were measured in the ranges 0.1-1.3, 0.1-14.4, and 0.5-38.2 ng/mL, peaking at 2, 2, and 6-24 h, respectively. The times of the last detectable levels were 2-8, 6-96, and 48-120 h. Besides high to very high THC-COOH levels (245 +/- 1,111 ng/mL), THC (3 +/- 8 ng/mL) and THC-OH (51 +/- 246 ng/mL) were found in 65 and 98% of cannabis-positive athletes' urine samples, respectively. In conclusion, in addition to THC-COOH, the pharmacologically active THC and THC-OH should be used as target analytes for doping urine analysis. In the case of light cannabis use, this may allow the estimation of more recent consumption, probably influencing performance during competitions. However, it is not possible to discriminate the intention of cannabis use, i.e., for recreational or doping purposes. Additionally, pharmacokinetic data of female volunteers are needed to interpret cannabis-positive doping cases of female athletes.
Resumo:
Epidemiological studies have demonstrated that exposure to fine particles is associated to adverse health effects, including cancer, respiratory and cardiovascular diseases. However, mechanisms by which particles induce health effects remain unclear. According to one of the most investigated hypotheses, particles cause adverse effects through the production of reactive oxygen species (ROS), which are very hazardous compounds able to attack directly biological structures, including the DNA strand or the lipid bilayer of the cells. If the defense mechanisms, constituted of antioxidants, are not able to counter ROS, then these compounds will cause in the body a range of oxidation reactions called "oxidative stress". The aim of the present research project was to better understand mechanisms by which exposure to fine particles induces oxidative stress. The first point of this project was to check whether exposure to high levels of fine particles is directly linked to oxidative stress, and whether this oxidative stress is accompanied by the activation of the defense mechanisms (antioxidants). The second point was to study the role played by the particle surface characteristics in the oxidative stress process. For that purpose, a study was conducted in bus depots with the participation of 40 mechanics. First, occupational exposure to particles (PM4) and to other pollutants (NOx, O3) was measured over a two-day period. Then, urine samples of mechanics were collected in order to measure levels of 8-hydroxy-2'-deoxyguanosine (8OHdG) and antioxidants. 8OHdG is a molecule formed by the oxidation of DNA and allowing to assess the oxidative stress status of the mechanics. Finally, particles were collected on filters, and functional groups located on the particle surface were analyzed in the laboratory using a Knudsen flow reactor. This technique allows not only to quantify functional groups on the particle surface, but also to measure the reaction kinetics. Results obtained during the field campaign in bus depots showed that mechanics were exposed to rather low levels of PM4 (20-85 μg/m3) and of pollutants (NOx: 100-1000 ppb; O3: <15 ppb). However, despite this low exposure, urinary levels of the oxidative stress biomarker (8OHdG) increased significantly for non-smoking workers over a two-day period of shift. This oxidative stress was accompanied by an increase of antioxidants, indicating the activation of defense mechanisms. On the other hand, the analysis of functional groups on the particle surface showed important differences, depending on the workplace, the date and the activities of workers. The particle surface contained simultaneously antagonistic functional groups which did not undergo internal reactions (such as acids and bases), and was usually characterized by a high density of carbonyl functions and a low density of acidic sites. Reaction kinetics measured using the Knudsen flow reactor pointed out fast reactions of oxidizable groups and slow reactions of acidic sites. Several exposure parameters were significantly correlated with the increase of the oxidative stress status: the presence of acidic sites, carbonyl functions and oxidizable groups on the particle surface; reaction kinetics of functional groups on the particle surface; particulate iron and copper concentrations; and NOx concentration.
Resumo:
OBJECTIVES: The diagnosis of pheochromocytoma relies on the measurement of plasma free metanephrines assay whose reliability has been considerably improved by ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Here we report an analytical interference occurring between 4-hydroxy-3-methoxymethamphetamine (HMMA), a metabolite of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), and normetanephrine (NMN) since they share a common pharmacophore resulting in the same product ion after fragmentation. DESIGN AND METHODS: Synthetic HMMA was spiked into plasma samples containing various concentrations of NMN and the intensity of the interference was determined by UPLC-MS/MS before and after improvement of the analytical method. RESULTS: Using a careful adjustment of chromatographic conditions including the change of the UPLC analytical column, we were able to distinguish both compounds. HMMA interference for NMN determination should be seriously considered since MDMA activates the sympathetic nervous system and if confounded with NMN may lead to false-positive tests when performing a differential diagnostic of pheochromocytoma.
Resumo:
We previously showed in a 3D rat brain cell in vitro model for glutaric aciduria type-I that repeated application of 1mM 3-hydroxy-glutarate (3-OHGA) caused ammonium accumulation, morphologic alterations and induction of non-apoptotic cell death in developing brain cells. Here, we performed a dose-response study with lower concentrations of 3- OHGA.We exposed our cultures to 0.1, 0.33 and 1mM 3-OHGA every 12h over three days at two developmental stages (DIV5-8 and DIV11-14). Ammonium accumulation was observed at both stages starting from 0.1mM 3-OHGA, in parallel with a glutamine decrease. Morphological changes started at 0.33mM with loss of MBP expression and loss of astrocytic processes. Neurons were not substantially affected. At DIV8, release of LDH in the medium and cellular TUNEL staining increased from 0.1mM and 0.33mM 3-OHGA exposure, respectively. No increase in activated caspase-3 was observed. We confirmed ammonium accumulation and non-apoptotic cell death of brain cells in our in vitro model at lower 3-OHGA concentrations thus strongly suggesting that the observed effects are likely to take place in the brain of affected patients. The concomitant glutamine decrease suggests a defect in the astrocyte ammonium buffering system. Ammonium accumulation might be the cause of non-apoptotic cell death.
Resumo:
Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3μg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4μg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome.
Resumo:
Tamoxifen and its metabolite 4-hydroxy-tamoxifen (4OHTam) are two potent molecules that have anticancer properties on breast cancers. Their medical use is expected to increase with the increasing global cancer rate. After consumption, patients excrete tamoxifen and the 4OHTam metabolite into wastewaters, and tamoxifen has been already detected in wastewaters and natural waters. The concentrations of 4OHTam in waters have never been reported. A single study reported 4OHTam effects on the microcrustacean Daphnia pulex. The effects of tamoxifen and 4OHTam over more than two generations are unknown in aquatic invertebrates. The main goal of this study was to assess the long-term sensitivity of the microcrustacean D. pulex over four generations, based on size, reproduction, viability and the intrinsic rate of natural increase (r). Additional experiments were carried out to observe whether the effects of tamoxifen and 4OHTam were reversible in the next generation after descendants were withdrawn from chemical stress (i.e., recovery experiment), and whether the lowest test concentration of each chemical induced toxic effects when both concentrations were combined (i.e., mixture experiments). Our results showed that tamoxifen and 4OHTam induced the adverse effects at environmentally relevant concentrations. Tamoxifen and 4OHTam impaired size, viability, reproduction and the r in four generations of treated D. pulex, but these effects were not clearly magnified over generations. Tamoxifen was more potent than 4OHTam on D. pulex. When used in a mixture, the combination of tamoxifen and 4OHTam induced effects in offspring, whereas no effects were observed when these chemicals were tested individually. In the recovery experiment, the reproduction and size were reduced in offspring withdrawn from chemical exposures. Our results suggested that tamoxifen and its metabolite may be a relevant pharmaceutical to consider in risk assessment.
Resumo:
Fluctuations in ammonium (NH4+), measured as NH4-N loads using an ion-selective electrode installed at the inlet of a sewage treatment plant, showed a distinctive pattern which was associated to weekly (i.e., commuters) and seasonal (i.e., holidays) fluctuations of the population. Moreover, population size estimates based on NH4-N loads were lower compared to census data. Diurnal profiles of benzoylecgonine (BE) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) were shown to be strongly correlated to NH4-N. Characteristic patterns, which reflect the prolonged nocturnal activity of people during the weekend, could be observed for BE, cocaine, and a major metabolite of MDMA (i.e., 4-hydroxy-3-methoxymethamphetamine). Additional 24 h composite samples were collected between February and September 2013. Per-capita loads (i.e., grams per day per 1000 inhabitants) were computed using census data and NH4-N measurements. Normalization with NH4-N did not modify the overall pattern, suggesting that the magnitude of fluctuations in the size of the population is negligible compared to those of illicit drug loads. Results show that fluctuations in the size of the population over longer periods of time or during major events can be monitored using NH4-N loads: either using raw NH4-N loads or population size estimates based on NH4-N loads, if information about site-specific NH4-N population equivalents is available.
Resumo:
Aggregating fetal liver cell cultures were tested for their ability to metabolize xenobiotics using ethoxycoumarin-O-deethylase (ECOD), as marker of phase I metabolism, and glutathione S-transferase (GST), as marker for phase II reactions. Significant basal activities, stable over 14 days in culture were measured for both ECOD and GST activities. The prototype cytochrome P450 inducers, 3-methylcholanthrene (3-MC) and phenobarbital (PB), increased ECOD and GST activities reaching an optimum 7 days after culturing, followed by a decline in activity. This decline was partially prevented by 1% dimethyl sulfoxide (DMSO) added chronically to the culture medium. DMSO was also found to induce ECOD activity and to a lesser extent GST activity. Furthermore, it potentiated in a dose-dependent manner the induction of ECOD by PB. The food-borne carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is metabolically transformed through a number of pathways in vivo. It was therefore used to examine the metabolic capacity in fetal and adult liver cell aggregates. Metabolism of MeIQx was mainly through N2-conjugation, resulting in formation of the N2-glucuronide and sulfamate conjugates for non-induced fetal liver cells. These metabolites were also found in large amounts in non-induced adult liver cells. Low levels of cytochrome P450-mediated ring-hydroxylated metabolites were detected in both non-induced fetal and adult liver cells. After induction with arochlor (PCB) or 3-MC, the major pathway was ring-hydroxylation (cytochrome P450 dependent), followed by conjugation to beta-glucuronic or sulfuric acid. The presence of the glucuronide conjugate of N-hydroxy-MeIQx, a mutagenic metabolite, suggested an induction of P450 CYP1A2. The metabolism of MeIQx by liver cell aggregates is very similar to that observed in vivo and suggests that aggregating liver cell cultures are a useful model for in vitro metabolic studies in toxicology.