106 resultados para Human Papillomavirus vaccine
em Université de Lausanne, Switzerland
Resumo:
Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.
Resumo:
Human papillomaviruses (HPV)-related cervical cancer is the second leading cause of cancer death in women worldwide. Despite active development, HPV E6/E7 oncogene-specific therapeutic vaccines have had limited clinical efficacy to date. Here, we report that intravaginal (IVAG) instillation of CpG-ODN (TLR9 agonist) or poly-(I:C) (TLR3 agonist) after subcutaneous E7 vaccination increased ∼fivefold the number of vaccine-specific interferon-γ-secreting CD8 T cells in the genital mucosa (GM) of mice, without affecting the E7-specific systemic response. The IVAG treatment locally increased both E7-specific and total CD8 T cells, but not CD4 T cells. This previously unreported selective recruitment of CD8 T cells from the periphery by IVAG CpG-ODN or poly-(I:C) was mediated by TLR9 and TLR3/melanoma differentiation-associated gene 5 signaling pathways, respectively. For CpG, this recruitment was associated with a higher proportion of GM-localized CD8 T cells expressing both CCR5 and CXCR3 chemokine receptors and E-selectin ligands. Most interestingly, IVAG CpG-ODN following vaccination led to complete regression of large genital HPV tumors in 75% of mice, instead of 20% with vaccination alone. These findings suggest that mucosal application of immunostimulatory molecules might substantially increase the effectiveness of parenterally administered vaccines.Mucosal Immunology advance online publication 12 September 2012; doi:10.1038/mi.2012.83.
Resumo:
To specifically induce a mucosal antibody response to purified human papillomavirus type 16 (HPV16) virus-like particles (VLP), we immunized female BALB/c mice orally, intranasally, and/or parenterally and evaluated cholera toxin (CT) as a mucosal adjuvant. Anti-HPV16 VLP immunoglobulin G (IgG) and IgA titers in serum, saliva, and genital secretions were measured by enzyme-linked immunosorbent assay (ELISA). Systemic immunizations alone induced HPV16 VLP-specific IgG in serum and, to a lesser extent, in genital secretions but no secretory IgA. Oral immunization, even in the presence of CT, was inefficient. However, three nasal immunizations with 5 microgram of VLP given at weekly intervals to anesthetized mice induced high (>10(4)) and long-lasting (>15 weeks) titers of anti-HPV16 VLP antibodies in all samples, including IgA and IgG in saliva and genital secretions. CT enhanced the VLP-specific antibody response 10-fold in serum and to a lesser extent in saliva and genital secretions. Nasal immunization of conscious mice compared to anesthetized mice was inefficient and correlated with the absence of uptake of a marker into the lung. However, a 1-microgram VLP systemic priming followed by two 5-microgram VLP intranasal boosts in conscious mice induced both HPV16 VLP-specific IgG and IgA in secretions, although the titers were lower than in anesthetized mice given three intranasal immunizations. Antibodies in serum, saliva, and genital secretions of immunized mice were strongly neutralizing in vitro (50% neutralization with ELISA titers of 65 to 125). The mucosal and systemic/mucosal HPV16 VLP immunization protocols that induced significant titers of neutralizing IgG and secretory IgA in mucosal secretions in mice may be relevant to genital HPV VLP-based human vaccine trials.
Resumo:
Cervical cancer is a public health concern as it represents the second cause of cancer death in women worldwide. High-risk human papillomaviruses (HPV) are the etiologic agents, and HPV E6 and/or E7 oncogene-specific therapeutic vaccines are under development to treat HPV-related lesions in women. Whether the use of mucosal routes of immunization may be preferable for inducing cell-mediated immune responses able to eradicate genital tumors is still debated because of the uniqueness of the female genital mucosa (GM) and the limited experimentation. Here, we compared the protective activity resulting from immunization of mice via intranasal (i.n.), intravaginal (IVAG) or subcutaneous (s.c.) routes with an adjuvanted HPV type 16 E7 polypeptide vaccine. Our data show that s.c. and i.n. immunizations elicited similar frequencies and avidity of TetE71CD81 and E7-specific Interferon-gamma-secreting cells in the GM, whereas slightly lower immune responses were induced by IVAG immunization. In a novel orthotopic murine model, both s.c. and i.n. immunizations allowed for complete long-term protection against genital E7-expressing tumor challenge. However, only s.c. immunization induced complete regression of already established genital tumors. This suggests that the higher E7-specific systemic response observed after s.c. immunization may contribute to the regression of growing genital tumors, whereas local immune responses may be sufficient to impede genital challenges. Thus, our data show that for an efficiently adjuvanted protein-based vaccine, parenteral vaccination route is superior to mucosal vaccination route for inducing regression of established genital tumors in a murine model of HPV-associated genital cancer.
Resumo:
OBJECTIVES: Human papillomavirus (HPV) is a sexually transmitted infection of particular interest because of its high prevalence rate and strong causal association with cervical cancer. Two prophylactic vaccines have been developed and different countries have made or will soon make recommendations for the vaccination of girls. Even if there is a consensus to recommend a vaccination before the beginning of sexual activity, there are, however, large discrepancies between countries concerning the perceived usefulness of a catch-up procedure and of boosters. The main objective of this article is to simulate the impact on different vaccination policies upon the mid- and long-term HPV 16/18 age-specific infection rates. METHODS: We developed an epidemiological model based on the susceptible-infective-recovered approach using Swiss data. The mid- and long-term impact of different vaccination scenarios was then compared. RESULTS: The generalization of a catch-up procedure is always beneficial, whatever its extent. Moreover, pending on the length of the protection offered by the vaccine, boosters will also be very useful. CONCLUSIONS: To be really effective, a vaccination campaign against HPV infection should at least include a catch-up to early reach a drop in HPV 16/18 prevalence, and maybe boosters. Otherwise, the protection insured for women in their 20s could be lower than expected, resulting in higher risks to later develop cervical cancer.
Resumo:
RESUME Le cancer du col de l'utérus, deuxième cause de mort par cancer chez la femme, a pu être associé à une infection par plusieurs types de virus du Papillome Humain (HPV), et en particulier HPV 16. Les vaccins prophylactiques sont efficaces à prévenir le cancer du col utérin alors que les lésions de haut grade sont généralement traitées par ablation chirurgicale et par d'éventuels traitements additionnels. Les risques de récurrence liés aux ablations et le taux de mortalité (50%) lié au cancer, démontrent le besoin de développer des stratégies alternatives afin de cibler les lésions précancéreuses. A ce jour, les vaccins thérapeutiques ont démontré peu de résultats cliniques, contrastant avec les régressions de tumeurs ectopiques observées après vaccination dans des modèles murins avec tumeurs associées à HPV. L'induction de réponses immunitaires protectrices dans la muqueuse génitale semble être cruciale pour l'efficacité des vaccins thérapeutiques HPV et évaluer leur efficacité dans un modèle murin avec tumeurs-HPV génitales représente un pré-requis important avant de procéder à des études cliniques. Par conséquent, nous avons établi un modèle murin orthotopique où des tumeurs se développent dans (a muqueuse génitale après une instillation intra-vaginale (i.vag) de cellules tumorales exprimant les oncogènes E6/E7 d'HPV 16 et transduites par un vecteur lentiviral codant la luciferase afin de suivre le développement de ces tumeurs in vivo par imagerie. La caractérisation histologique a démontré que les tumeurs grandissaient dans l'épithélium vaginal et en accord avec leur localisation, des cellules Τ CD8 spécifiques à E7 induites par la tumeur n'étaient détectées que dans la muqueuse génitale et les ganglions drainants. Une infiltration de cellules Τ régulatrices a aussi été mise en évidence, empêchant la régression spontanée de ces tumeurs. Par conséquent, ce modèle devrait être plus adéquat pour tester des stratégies thérapeutiques, étant donné qu'il partage certaines similarités immunologiques avec les lésions génitales naturelles causées par HPV. Etant donné que les oncogènes E6 et E7 d'HPV sont nécessaires à la maintenance du phénotype cancéreux des cellules cervicales, elles représentent des antigènes cibles pour la vaccination thérapeutique. Nous avons démontré que des souris immunisées par voie sous-cutanée (s.c.) avec une dose d'un vaccin à base de polypeptide E7 d'HPV 16 et d'adjuvants, présentaient de nombreuses cellules Τ CD8 sécrétant de l'IFN-γ spécifiquement à E7 dans leurs organes lymphatiques mais également dans la muqueuse génitale. De plus, le manque de corrélation entre les réponses spécifiques mesurées dans la périphérie et dans la muqueuse génitale souligne la nécessité et l'importance de déterminer les réponses immunitaires localement là où les lésions dues à HPV se développent. Si une vaccination par voie muqueuse est plus propice à traiter/régresser des infections génitales/tumeurs que le voie parentérale est un sujet débattu. Nos données montrent que seule la voie s.c. était capable de régresser la quasi totalité des tumeurs génitales chez la souris bien que des réponses CD8 spécifiques à E7 similaires étaient mesurées dans la muqueuse génitale après des vaccinations intra-nasale et i.vag. Afin d'augmenter la réponse spécifique au vaccin dans la muqueuse génitale, des immunostimulants ont été administrés par voie i.vag après vaccination. Nous avons démontré qu'une application i.vag d'agonistes des Toll like receptors après une vaccination s.c. induisait de manière significative une augmentation des cellules Τ CD8 sécrétant de l'IFN-γ spécifiquement à E7 dans la muqueuse génitale. Plus précisément et concernant les CpG et Poly l:C, l'effet était probablement associé à une attraction locale des cellules Τ CD8 et deuxièmement dépendait respectivement des voies de signalisation TLR9 et TLR3/Mda5. Finalement, cette stratégie combinatoire a permis de régresser des grosses tumeurs génitales chez la souris, suggérant qu'une telle immunothérapie pourrait adéquatement traiter des lésions dues à HPV chez les femmes. SUMMARY Cervical cancer is the second leading cause of cancer mortality in women worldwide and results from an infection with a subset of Human Papillomavirus (HPV), HPV 16 representing the most prevalent type. The available prophylactic vaccines are an effective strategy to prevent cervical cancer while already established high grade lesions usually require surgical ablation of lesion with possible additional treatments. Recurrence risks linked to conventional ablations and the high mortality (50%) related to cervical cancer demonstrate the need for alternative strategies like immunotherapies to target pre¬cancerous lesions. Until now, therapeutic vaccines only showed limited clinical results, which strongly contrast with the regression of ectopic tumors observed in the available murine HPV tumor models after vaccination. Induction of protective immune responses in the genital mucosa (GM) may be crucial for efficacy of HPV therapeutic vaccines and evaluating their efficacy in a murine model with genital HPV- tumors represents an important prerequisite for clinical trials. Thus, we have here established an orthotopic mouse model where tumors in the GM develop after an intravaginal (i.vag) instillation of HPV 16 E6/E7 oncogenes-expressing tumor cells transduced with a luciferase encoding lentivirus vector for in vivo imaging of tumor growth. Histological characterization showed that tumor grew within the vaginal epithelium and according to their mucosal location tumor- induced E7-specific CD8 Τ cells were restricted to the GM and genital draining lymph nodes together with high Τ regulatory cells infiltrates preventing spontaneous regression. Consequently, sharing several immunological similarities with natural genital HPV lesions, this novel genital tumor model may be more adequate to test therapeutic strategies. As E6 and/or E7 HPV oncogenes expression is required for the maintenance of the cancerous phenotype of cervical cells, they represent target antigens for therapeutic vaccination. We reported that mice subcutaneously (s.c.) immunized once with an adjuvanted HPV 16 E7 polypeptide vaccine harbored high E7-specific IFN-γ secreting CD8 Τ cells in their lymphoid organs and more importantly in the GM. In addition, the lack of correlation between specific responses measured in the periphery with those measured in the GM highlighted the necessity and relevance to determine the immune responses locally where HPV 16-induced lesions develop. Whether a mucosal route of immunization is better to treat/regress genital infections/tumors than parenteral immunization is still debated. Our data shows that although similar E7-specific IFN-γ secreting CD8 Τ cells responses were measured in the GM upon mucosal routes of E7 vaccine delivery (nasal and vaginal immunizations), only the s.c immunization was able to regress at least all genital tumors in mice. To further increase the vaccine-specific responses in the GM, immunostimulatory agents were i.vag administrated after vaccination. We demonstrated that a single i.vag application of toll like receptor (TLR) agonists after a s.c. E7 vaccination induced a significant increase of E7-specific IFN-γ secreting CD8 Τ cells in the GM. More precisely, regarding CpG and Poly l:C, the effect is most probably associated with a local attraction of total CD8 Τ cells and secondly depends on TLR9 and TLR3/Mda5 signaling pathways, respectively. Finally, this combinatorial strategy induced tumor regression in mice harboring large genital tumors, suggesting that such an immunotherapy could be adequate to treat HPV-induced lesions in women.
Resumo:
Human papillomavirus (HPV) vaccines based on L1 virus-like particle (VLP) can prevent genital HPV infection and associated lesions after three intramuscular injections. Needle-free administration might facilitate vaccine implementation, especially in developing countries. Here we have investigated rectal and vaginal administration of HPV16 L1 VLPs in mice and their ability to induce anti-VLP and HPV16-neutralizing antibodies in serum and in genital, rectal and oral secretions. Rectal and vaginal immunizations were not effective in the absence of adjuvant. Cholera toxin was able to enhance systemic and mucosal anti-VLPs responses after rectal immunization, but not after vaginal immunization. Rectal immunization with Resiquimod and to a lesser extent Imiquimod, but not monophosphoryl lipid A, induced anti-HPV16 VLP antibodies in serum and secretions. Vaginal immunization was immunogenic only if administered in mice treated with nonoxynol-9, a disrupter of the cervico-vaginal epithelium. Our findings show that rectal and vaginal administration of VLPs can induce significant HPV16-neutralizing antibody levels in secretions, despite the fact that low titers are induced in serum. Imidazoquinolines, largely used to treat genital and anal warts, and nonoxonol-9, used as genital microbicide/spermicide were identified as adjuvants that could be safely used by the rectal or vaginal route, respectively.
Resumo:
Cervical cancer results from infection with high-risk type human papillomaviruses (HPV). Therapeutic vaccines aiming at controlling existing genital HPV infections and associated lesions are usually tested in mice with HPV-expressing tumor cells subcutaneously implanted into their flank. However, effective vaccine-induced regression of these ectopic tumors strongly contrasts with the poor clinical results of these vaccines produced in patients with HPV-associated genital neoplasia. To assess HPV therapeutic vaccines in a more relevant setting, we have, here, established an orthotopic mouse model where tumors in the genital mucosa (GM) develop after an intravaginal instillation of HPV16 E6/E7-expressing tumor cells transduced with a luciferase-encoding lentiviral vector for in vivo imaging of tumor growth. Tumor take was 80-90% after nonoxynol-9 induced damage of the epithelium. Tumors remained localized in the genital tract, and histological analysis showed that most tumors grew within the squamous epithelium of the vaginal wall. Those tumors induced (i) E7-specific CD8 T cells restricted to the GM and draining lymph nodes, in agreement with their mucosal location and (ii) high Foxp3+ CD4+ infiltrates, similarly to those found in natural non-regressing HPV lesions. This novel genital HPV-tumor model by requiring GM homing of vaccine-induced immune responses able to overcome local immuno-suppression may be more representative of the situation occurring in patients upon therapeutic vaccination.
Resumo:
We performed an international proficiency study of Human Papillomavirus (HPV) type 16 serology. A common methodology for serology based on virus-like particle (VLP) ELISA was used by 10 laboratories in 6 continents. The laboratories used the same VLP reference reagent, which was selected as the most stable, sensitive and specific VLP preparation out of VLPs donated from 5 different sources. A blinded proficiency panel consisting of 52 serum samples from women with PCR-verified HPV 16-infection, 11 control serum samples from virginal women and the WHO HPV 16 International Standard (IS) serum were distributed. The mean plus 3 standard deviations of the negative control serum samples was the most generally useful "cut-off" criterion for distinguishing positive and negative samples. Using sensitivity of at least 50% and a specificity of 100% as proficiency criteria, 6/10 laboratories were proficient. In conclusion, an international Standard Operating Procedure for HPV serology, an international reporting system in International Units (IU) and a common "cut-off" criterion have been evaluated in an international HPV serology proficiency study.
Resumo:
Prophylactic human papillomavirus (HPV) L1 virus like particle (VLP) vaccines have been shown, in large clinical trials, to be very immunogenic, well-tolerated and highly efficacious against genital disease caused by the vaccine HPV types. However these vaccines, at the present, protect against only two of the 15 oncogenic genital HPV types, they are expensive, delivered by intramuscular injection and require a cold chain. The challenges are to develop cheap, thermo-stable vaccines that can be delivered by non-injectable methods that provide long term (decades) protection at mucosal surfaces to most, if not all, oncogenic HPV types that is as good as the current VLP vaccines. Current approaches include L1 capsomers, L2 protein and peptides, delivery via recombinant L1 bacterial and viral vectors and large-scale VLP production in plants. Rational design and successful development of such vaccines will be based on an understanding of the immune response, and particularly the 'cross talk' between the innate and adaptive responses. This will be central in the development of adjuvants and vaccine formulations that induce the response to provide effective protection.
Resumo:
The available virus-like particle (VLP)-based prophylactic vaccines against specific human papillomavirus (HPV) types afford close to 100% protection against the type-associated lesions and disease. Based on papillomavirus animal models, it is likely that protection against genital lesions in humans is mediated by HPV type-restricted neutralizing antibodies that transudate or exudate at the sites of genital infection. However, a correlate of protection was not established in the clinical trials because few disease cases occurred, and true incident infection could not be reliably distinguished from the emergence or reactivation of prevalent infection. In addition, the current assays for measuring vaccine-induced antibodies, even the gold standard HPV pseudovirion (PsV) in vitro neutralization assay, may not be sensitive enough to measure the minimum level of antibodies needed for protection. Here, we characterize the recently developed model of genital challenge with HPV PsV and determine the minimal amounts of VLP-induced neutralizing antibodies that can afford protection from genital infection in vivo after transfer into recipient mice. Our data show that serum antibody levels >100-fold lower than those detectable by in vitro PsV neutralization assays are sufficient to confer protection against an HPV PsV genital infection in this model. The results clearly demonstrate that, remarkably, the in vivo assay is substantially more sensitive than in vitro PsV neutralization and thus may be better suited for studies to establish correlates of protection.
Resumo:
We carried out a systematic review of HPV vaccine pre- and post-licensure trials to assess the evidence of their effectiveness and safety. We find that HPV vaccine clinical trials design, and data interpretation of both efficacy and safety outcomes, were largely inadequate. Additionally, we note evidence of selective reporting of results from clinical trials (i.e., exclusion of vaccine efficacy figures related to study subgroups in which efficacy might be lower or even negative from peer-reviewed publications). Given this, the widespread optimism regarding HPV vaccines long-term benefits appears to rest on a number of unproven assumptions (or such which are at odd with factual evidence) and significant misinterpretation of available data. For example, the claim that HPV vaccination will result in approximately 70% reduction of cervical cancers is made despite the fact that the clinical trials data have not demonstrated to date that the vaccines have actually prevented a single case of cervical cancer (let alone cervical cancer death), nor that the current overly optimistic surrogate marker-based extrapolations are justified. Likewise, the notion that HPV vaccines have an impressive safety profile is only supported by highly flawed design of safety trials and is contrary to accumulating evidence from vaccine safety surveillance databases and case reports which continue to link HPV vaccination to serious adverse outcomes (including death and permanent disabilities). We thus conclude that further reduction of cervical cancers might be best achieved by optimizing cervical screening (which carries no such risks) and targeting other factors of the disease rather than by the reliance on vaccines with questionable efficacy and safety profiles.
Resumo:
OBJECTIVES: Evaluation of the clinical impact of multiple infections of the cervix by human papillomavirus, including human papillomavirus-16, compared with single human papillomavirus-16 infection. STUDY DESIGN: One hundred sixty-nine women were classified in 3 categories depending on their human papillomavirus profile: human papillomavirus-16 only, human papillomavirus-16 and low-risk type(s), and human papillomavirus-16 and other high-risk type(s). Cervical brush samples were analyzed for human papillomavirus DNA by polymerase chain reaction and reverse line blot hybridization. All women were evaluated with colposcopy during 24 months or more. Management was according to the Bethesda recommendations. RESULTS: Women infected with human papillomavirus-16 and other high-risk human papillomavirus type(s) presented more progression or no change in the grade of dysplasia, compared with women of the other groups (relative risk [RR], 1.39; 95% confidence interval [CI], 1.07-1.82; P = .02 at 6 months; RR, 2.10; 95% CI, 1.46-3.02; P < .001 at 12 months; RR, 1.82; 95% CI, 1.21-2.72; P = .004 at 24 months). CONCLUSION: Coinfection of women with human papillomavirus-16 and other high-risk human papillomavirus type(s) increases the risk of unfavorable evolution.
Resumo:
Vaccination by the nasal route has been successfully used for the induction of immune responses. Either the nasal-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue, or lung dendritic cells have been mainly involved. Following nasal vaccination of mice with human papillomavirus type 16 (HPV16) virus-like-particles (VLPs), we have previously shown that interaction of the antigen with the lower respiratory tract was necessary to induce high titers of neutralizing antibodies in genital secretions. However, following a parenteral priming, nasal vaccination with HPV16 VLPs did not require interaction with the lung to induce a mucosal immune response. To evaluate the contribution of the upper and lower respiratory tissues and associated lymph nodes (LN) in the induction of humoral responses against HPV16 VLPs after nasal vaccination, we localized the immune inductive sites and identified the antigen-presenting cells involved using a specific CD4(+) T-cell hybridoma. Our results show that the trachea, the lung, and the tracheobronchial LN were the major sites responsible for the induction of the immune response against HPV16 VLP, while the NALT only played a minor role. Altogether, our data suggest that vaccination strategies aiming to induce efficient immune responses against HPV16 VLP in the female genital tract should target the lower respiratory tract.