21 resultados para How adults learn
em Université de Lausanne, Switzerland
Resumo:
In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.
Resumo:
In this procedure, subjects learn the spatial position of one hole out of many, that allows them to escape from a large open-field into their home cage. The arena is circular and can be rotated between trials so that no proximal landmark is permanently associated with the target hole. This task is thus similar to the Morris water maze procedure, since subjects must remember the position of the escape hole relative to extra-arena cues only. In addition it allows studying the importance of olfactory cues such as scent marks in or around a hole. Since the motivation is to reach home and the motor requirement is low, this task provides a useful alternative to the Morris place navigation task for studying spatial orientation in weanling or senescent rats. Examples are given showing that various behavioural parameters provide a good estimation as how subjects learn this task.
Resumo:
It has been convincingly argued that computer simulation modeling differs from traditional science. If we understand simulation modeling as a new way of doing science, the manner in which scientists learn about the world through models must also be considered differently. This article examines how researchers learn about environmental processes through computer simulation modeling. Suggesting a conceptual framework anchored in a performative philosophical approach, we examine two modeling projects undertaken by research teams in England, both aiming to inform flood risk management. One of the modeling teams operated in the research wing of a consultancy firm, the other were university scientists taking part in an interdisciplinary project experimenting with public engagement. We found that in the first context the use of standardized software was critical to the process of improvisation, the obstacles emerging in the process concerned data and were resolved through exploiting affordances for generating, organizing, and combining scientific information in new ways. In the second context, an environmental competency group, obstacles were related to the computer program and affordances emerged in the combination of experience-based knowledge with the scientists' skill enabling a reconfiguration of the mathematical structure of the model, allowing the group to learn about local flooding.
Resumo:
AIMS: This article explores the structures of relational resources that individuals with psychiatric disorders get from their family configurations using the concept of social capital. METHODS: The research is based on a sample of 54 individuals with psychiatric disorders and behavioural problems, and a comparison sample of 54 individuals without a clinical record matched to the clinical respondents for age and sex. Standard measures of social capital from social network methods are applied on family configurations of individuals from both samples. Differences are tested by variance analysis. RESULTS: Structures of family resources available to individuals with psychiatric disorders are distinct. Individuals with psychiatric disorders perceive themselves as less central in their family configurations and less connected to their family members. Their significant family members are perceived as less connected with each other. As a whole, their family configurations are smaller and do not include spouses or partners. Therefore bridging and bonding social capitals are not readily available for them. CONCLUSION: As family configurations of individuals with psychiatric disorders provide fewer relational resources than other families, they are not able to deal with social integration of individuals with psychiatric disorders on their own.
Resumo:
BACKGROUND/AIMS: Cannabis use is a growing challenge for public health, calling for adequate instruments to identify problematic consumption patterns. The Cannabis Use Disorders Identification Test (CUDIT) is a 10-item questionnaire used for screening cannabis abuse and dependency. The present study evaluated that screening instrument. METHODS: In a representative population sample of 5,025 Swiss adolescents and young adults, 593 current cannabis users replied to the CUDIT. Internal consistency was examined by means of Cronbach's alpha and confirmatory factor analysis. In addition, the CUDIT was compared to accepted concepts of problematic cannabis use (e.g. using cannabis and driving). ROC analyses were used to test the CUDIT's discriminative ability and to determine an appropriate cut-off. RESULTS: Two items ('injuries' and 'hours being stoned') had loadings below 0.5 on the unidimensional construct and correlated lower than 0.4 with the total CUDIT score. All concepts of problematic cannabis use were related to CUDIT scores. An ideal cut-off between six and eight points was found. CONCLUSIONS: Although the CUDIT seems to be a promising instrument to identify problematic cannabis use, there is a need to revise some of its items.
Resumo:
This paper aims to present an ePortfolio project led for two years in a multilingual and interdisciplinary Master's program in public discourse and communication analysis offered by the Faculty of Arts of the University of Lausanne (Switzerland). Globally, the project - named Learn to communicate skills - offers a reflection about academic skills and their transferability to the professional world. More precisely, the aim of the project is to make students aware of the importance of reflexive learning to make their skills transferable to other contexts.
Resumo:
Population genetic differentiation characterizes the repartition of alleles among populations. It is commonly thought that genetic differentiation measures, such as GST and D, should be near zero when allele frequencies are close to their expected value in panmictic populations, and close to one when they are close to their expected value in isolated populations. To analyse those properties, we first derive analytically a reference function f of known parameters that describes how important features of genetic differentiation (e.g. gene diversity, proportion of private alleles, frequency of the most common allele) are close to their expected panmictic and isolation value. We find that the behaviour of function f differs according to three distinct mutation regimes defined by the scaled mutation rate and the number of populations. Then, we compare GST and D to f, and demonstrate that their signal of differentiation strongly depends on the mutation regime. In particular, we show that D captures well the variations of genetic diversity when mutation is weak, otherwise it overestimates it when panmixia is not met. GST detects population differentiation when mutation is intermediate but has a low sensitivity to the variations of genetic diversity when mutation is weak. When mutation is strong the domain of sensitivity of both measures are altered. Finally, we also point out the importance of the number of populations on genetic differentiation measures, and provide recommendations for the use of GST and D.
Resumo:
BACKGROUND AND OBJECTIVE: Standardization of surgical technique helps to reproduce excellent clinical outcomes, especially in teaching institutions. We aim to describe in detail our established approach for oncological right colectomy. TECHNIQUE: The right colon is mobilized in a five-step latero-inferior approach starting off with (1) the terminal ileum, visualizing the duodenum and the head of pancreas. (2) The ascending colon is dissected from the retroperitoneum, and takedown of the hepatic flexure is completed coming retrograde from the transverse colon (3). (4) Transection of the remaining retroperitoneal attachments completes exposure of the duodenum and mobilization of the right colon. (5) Ileocolic vessels are dissected out and divided close to their origin, and the mesocolon is divided. We then establish intestinal continuity by use of a side-to-side stapled technique. (1) The arms of a linear cutting stapler are inserted via transverse incisions at the anti-mesenteric sides of the terminal ileum and the transverse colon (tenia) and fired. (2) The enterotomy site is closed by removal of the specimen using a second transverse firing of the linear cutting stapler. An important final step is the (3) reinforcement of the anastomotic ends and the crossing of the staple lines; an omental patch and closure of the mesenteric window are optional. CONCLUSION: The suggested standardized five-step lateral-to-medial dissection of the right colon and the three-step side-to-side stapled technique for ileo-colonic anastomosis are easy to learn and to reproduce. Careful adherence to pivotal technical details will help to obtain an optimal oncological outcome and a consistently low leak rate around 2 %.
Resumo:
Detection and discrimination of visuospatial input involve at least extracting, selecting and encoding relevant information and decision-making processes allowing selecting a response. These two operations are altered, respectively, by attentional mechanisms that change discrimination capacities, and by beliefs concerning the likelihood of uncertain events. Information processing is tuned by the attentional level that acts like a filter on perception, while decision-making processes are weighed by subjective probability of risk. In addition, it has been shown that anxiety could affect the detection of unexpected events through the modification of the level of arousal. Consequently, purpose of this study concerns whether and how decision-making and brain dynamics are affected by anxiety. To investigate these questions, the performance of women with either a high (12) or a low (12) STAI-T (State-Trait Anxiety Inventory, Spielberger, 1983) was examined in a decision-making visuospatial task where subjects have to recognize a target visual pattern from non-target patterns. The target pattern was a schematic image of furniture arranged in such a way as to give the impression of a living room. Non-target patterns were created by either the compression or the dilatation of the distances between objects. Target and non-target patterns were always presented in the same configuration. Preliminary behavioral results show no group difference in reaction time. In addition, visuo-spatial abilities were analyzed trough the signal detection theory for quantifying perceptual decisions in the presence of uncertainty (Green and Swets, 1966). This theory treats detection of a stimulus as a decision-making process determined by the nature of the stimulus and cognitive factors. Astonishingly, no difference in d' (corresponding to the distance between means of the distributions) and c (corresponds to the likelihood ratio) indexes was observed. Comparison of Event-related potentials (ERP) reveals that brain dynamics differ according to anxiety. It shows differences in component latencies, particularly a delay in anxious subjects over posterior electrode sites. However, these differences are compensated during later components by shorter latencies in anxious subjects compared to non-anxious one. These inverted effects seem indicate that the absence of difference in reaction time rely on a compensation of attentional level that tunes cortical activation in anxious subjects, but they have to hammer away to maintain performance.
Resumo:
The population of industrialized societies has increased tremendously over the last century, raising the question on how an enhanced age affects cognition. The relevance of two models of healthy aging are contrasted in the present study that both target the functioning of the two cerebral hemispheres. The right hemi-aging model (RHAM) assumes that functions of the right hemisphere decline before those of the left hemisphere. The Hemispheric Asymmetry Reduction in Older Adults (HAROLD) Model suggests that the contralateral hemisphere supports the normally superior hemisphere in a given task resulting in a reduced hemispheric asymmetry overall. In a mixed design, 20 younger and 20 older adults performed both a task assessing a left (lateralized lexical decisions) and a right (sex decisions on chimeric faces) hemisphere advantage. Results indicated that lateralized performance in both tasks was attenuated in older as compared to younger adults, in particular in men. These observations support the HAROLD model. Future studies should investigate whether this reduced functional hemispheric asymmetry in older age results from compensatory processes or from a process of de-differentiation
Resumo:
Most theories of perception assume a rigid relationship between objects of the physical world and the corresponding mental representations. We show by a priori reasoning that this assumption is not fulfilled. We claim instead that all object-representation correspondences have to be learned. However, we cannot learn to perceive all objects that there are in the world. We arrive at these conclusions by a combinatory analysis of a fictive stimulus world and the way to cope with its complexity, which is perceptual learning. We show that successful perceptual learning requires changes in the representational states of the brain that are not derived directly from the constitution of the physical world. The mind constitutes itself through perceptual learning.
Resumo:
BACKGROUND: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether BMI clusters among children and how age-specific BMI clusters are related remains unknown. We aimed to identify and compare the spatial dependence of BMI in adults and children in a Swiss general population, taking into account the area's income level. METHODS: Geo-referenced data from the Bus Santé study (adults, n=6663) and Geneva School Health Service (children, n=3601) were used. We implemented global (Moran's I) and local (local indicators of spatial association (LISA)) indices of spatial autocorrelation to investigate the spatial dependence of BMI in adults (35-74 years) and children (6-7 years). Weight and height were measured using standardized procedures. Five spatial autocorrelation classes (LISA clusters) were defined including the high-high BMI class (high BMI participant's BMI value correlated with high BMI-neighbors' mean BMI values). The spatial distributions of clusters were compared between adults and children with and without adjustment for area's income level. RESULTS: In both adults and children, BMI was clearly not distributed at random across the State of Geneva. Both adults' and children's BMIs were associated with the mean BMI of their neighborhood. We found that the clusters of higher BMI in adults and children are located in close, yet different, areas of the state. Significant clusters of high versus low BMIs were clearly identified in both adults and children. Area's income level was associated with children's BMI clusters. CONCLUSIONS: BMI clusters show a specific spatial dependence in adults and children from the general population. Using a fine-scale spatial analytic approach, we identified life course-specific clusters that could guide tailored interventions.
Resumo:
BACKGROUND: Guidelines for the prevention of coronary heart disease (CHD) recommend use of Framingham-based risk scores that were developed in white middle-aged populations. It remains unclear whether and how CHD risk prediction might be improved among older adults. We aimed to compare the prognostic performance of the Framingham risk score (FRS), directly and after recalibration, with refit functions derived from the present cohort, as well as to assess the utility of adding other routinely available risk parameters to FRS.¦METHODS: Among 2193 black and white older adults (mean age, 73.5 years) without pre-existing cardiovascular disease from the Health ABC cohort, we examined adjudicated CHD events, defined as incident myocardial infarction, CHD death, and hospitalization for angina or coronary revascularization.¦RESULTS: During 8-year follow-up, 351 participants experienced CHD events. The FRS poorly discriminated between persons who experienced CHD events vs. not (C-index: 0.577 in women; 0.583 in men) and underestimated absolute risk prediction by 51% in women and 8% in men. Recalibration of the FRS improved absolute risk prediction, particulary for women. For both genders, refitting these functions substantially improved absolute risk prediction, with similar discrimination to the FRS. Results did not differ between whites and blacks. The addition of lifestyle variables, waist circumference and creatinine did not improve risk prediction beyond risk factors of the FRS.¦CONCLUSIONS: The FRS underestimates CHD risk in older adults, particularly in women, although traditional risk factors remain the best predictors of CHD. Re-estimated risk functions using these factors improve accurate estimation of absolute risk.