137 resultados para Homologous recombinational repair
em Université de Lausanne, Switzerland
Resumo:
Cells defective in any of the RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are sensitive to DNA cross-linking agents and to ionizing radiation. Because the paralogs are required for the assembly of DNA damage-induced RAD51 foci, and mutant cell lines are defective in homologous recombination and show genomic instability, their defect is thought to be caused by an inability to promote efficient recombinational repair. Here, we show that the five paralogs exist in two distinct complexes in human cells: one contains RAD51B, RAD51C, RAD51D, and XRCC2 (defined as BCDX2), whereas the other consists of RAD51C with XRCC3. Both protein complexes have been purified to homogeneity and their biochemical properties investigated. BCDX2 binds single-stranded DNA and single-stranded gaps in duplex DNA, in accord with the proposal that the paralogs play an early (pre-RAD51) role in recombinational repair. Moreover, BCDX2 complex binds specifically to nicks in duplex DNA. We suggest that the extreme sensitivity of paralog-defective cell lines to cross-linking agents is owing to defects in the processing of incised cross links and the consequential failure to initiate recombinational repair at these sites.
Resumo:
During genetic recombination a heteroduplex joint is formed between two homologous DNA molecules. The heteroduplex joint plays an important role in recombination since it accommodates sequence heterogeneities (mismatches, insertions or deletions) that lead to genetic variation. Two Escherichia coli proteins, RuvA and RuvB, promote the formation of heteroduplex DNA by catalysing the branch migration of crossovers, or Holliday junctions, which link recombining chromosomes. We show that RuvA and RuvB can promote branch migration through 1800 bp of heterologous DNA, in a reaction facilitated by the presence of E.coli single-stranded DNA binding (SSB) protein. Reaction intermediates, containing unpaired heteroduplex regions bound by SSB, were directly visualized by electron microscopy. In the absence of SSB, or when SSB was replaced by a single-strand binding protein from bacteriophage T4 (gene 32 protein), only limited heterologous branch migration was observed. These results show that the RuvAB proteins, which are induced as part of the SOS response to DNA damage, allow genetic recombination and the recombinational repair of DNA to occur in the presence of extensive lengths of heterology.
Resumo:
In eukaryotes, Rad51 protein is responsible for the recombinational repair of double-strand DNA breaks. Rad51 monomers cooperatively assemble on exonuclease-processed broken ends forming helical nucleo-protein filaments that can pair with homologous regions of sister chromatids. Homologous pairing allows the broken ends to be reunited in a complex but error-free repair process. Rad51 protein has ATPase activity but its role is poorly understood, as homologous pairing is independent of adenosine triphosphate (ATP) hydrolysis. Here we use magnetic tweezers and electron microscopy to investigate how changes of DNA twist affect the structure of Rad51-DNA complexes and how ATP hydrolysis participates in this process. We show that Rad51 protein can bind to double-stranded DNA in two different modes depending on the enforced DNA twist. The stretching mode is observed when DNA is unwound towards a helical repeat of 18.6 bp/turn, whereas a non-stretching mode is observed when DNA molecules are not permitted to change their native helical repeat. We also show that the two forms of complexes are interconvertible and that by enforcing changes of DNA twist one can induce transitions between the two forms. Our observations permit a better understanding of the role of ATP hydrolysis in Rad51-mediated homologous pairing and strand exchange.
Resumo:
Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51 paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an essential role both in DNA repair and checkpoint signaling.
Resumo:
The RuvA and RuvB proteins of Escherichia coli, which are induced in response to DNA damage, are important in the formation of heteroduplex DNA during genetic recombination and related recombinational repair processes. In vitro studies show that RuvA binds Holiday junctions and acts as a specificity factor that targets the RuvB ATPase, a hexameric ring protein, to the junction. Together, RuvA and RuvB promote branch migration, an ATP-dependent reaction that increases the length of the heteroduplex DNA. Electron microscopic visualization of RuvAB now provides a new insight into the mechanism of this process. We observe the formation of a tripartite protein complex in which RuvA binds the crossover and is sandwiched between two hexameric rings of RuvB. The Holliday junction within this complex adopts a square-planar structure. We propose a molecular model for branch migration, a unique feature of which is the role played by the two oppositely oriented RuvB ring motors.
Resumo:
The rice low phytic acid (lpa) mutant Os-lpa-XS110-1(XS-lpa) has ~45 % reduction in seed phytic acid (PA) compared with the wild-type cultivar Xiushui 110. Previously, a single recessive gene mutation was shown to be responsible for the lpa phenotype and was mapped to a region of chromosome 3 near OsMIK (LOC_Os03g52760) and OsIPK1 (LOC_Os03g51610), two genes involved in PA biosynthesis. Here, we report the identification of a large insert in the intron of OsMIK in the XS-lpa mutant. Sequencing of fragments amplified through TAIL-PCRs revealed that the insert was a derivative of the LINE retrotransposon gene LOC_Os03g56910. Further analyses revealed the following characteristics of the insert and its impacts: (1) the inserted sequence of LOC_Os03g56910 was split at its third exon and rejoined inversely, with its 5' and 3' flanking sequences inward and the split third exon segments outward; (2) the LOC_Os03g56910 remained in its original locus in XS-lpa, and the insertion probably resulted from homologous recombination repair of a DNA double strand break; (3) while the OsMIK transcripts of XS-lpa and Xiushui 110 were identical, substantial reductions of the transcript abundance (~87 %) and the protein level (~60 %) were observed in XS-lpa, probably due to increased methylation in its promoter region. The above findings are discussed in the context of plant mutagenesis, epigenetics and lpa breeding.
Resumo:
Purpose of the Study: To elucidate the mechanism of homologous recombination and double-strand break repair mediated by the eukaryotic recombination pin, Rad51.
Resumo:
Individuals carrying BRCA2 mutations are predisposed to breast and ovarian cancers. Here, we show that BRCA2 plays a dual role in regulating the actions of RAD51, a protein essential for homologous recombination and DNA repair. First, interactions between RAD51 and the BRC3 or BRC4 regions of BRCA2 block nucleoprotein filament formation by RAD51. Alterations to the BRC3 region that mimic cancer-associated BRCA2 mutations fail to exhibit this effect. Second, transport of RAD51 to the nucleus is defective in cells carrying a cancer-associated BRCA2 truncation. Thus, BRCA2 regulates both the intracellular localization and DNA binding ability of RAD51. Loss of these controls following BRCA2 inactivation may be a key event leading to genomic instability and tumorigenesis.
Resumo:
Proteins that catalyse homologous recombination have been identified in all living organisms and are essential for the repair of damaged DNA as well as for the generation of genetic diversity. In bacteria homologous recombination is performed by the RecA protein, whereas in the eukarya a related protein called Rad51 is required to catalyse recombination and repair. More recently, archaeal homologues of RecA/Rad51 (RadA) have been identified and isolated. In this work we have cloned and purified the RadA protein from the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus and characterised its in vitro activities. We show that (i) RadA protein forms ring structures in solution and binds single- but not double-stranded DNA to form nucleoprotein filaments, (ii) RadA is a single-stranded DNA-dependent ATPase at elevated temperatures, and (iii) RadA catalyses efficient D-loop formation and strand exchange at temperatures of 60-70 degrees C. Finally, we have used electron microscopy to visualise RadA-mediated joint molecules, the intermediates of homologous recombination. Intriguingly, RadA shares properties of both the bacterial RecA and eukaryotic Rad51 recombinases.
Resumo:
Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2's tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2's function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2's function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair.
Resumo:
The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.
Resumo:
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.
Resumo:
Introduction: Several scores are commonly used to evaluate patients' postoperative satisfaction after lateral ankle ligament repair, including: AOFAS, FAAM, CAIT and CAIS. Comparing published studies in the literature is difficult, as the same patient can have markedly different results depending on which scoring system is used. The current study aims to address this gap in the literature by developing a system to compare these tests, to allow better analysis and comparison of published studies. Patients and methods: This is a retrospective cohort study of 47 patients following lateral ankle ligament repair using a modified Broström-Gould technique. All patients were operated between 2005 and 2010 by a single surgeon and followed the same post operative rehabilitation protocol. Six patients were excluded from the study because of concomitant surgery. Patients were assessed by an independent observer. We used the Pearson correlation coefficient to analyse the concordance of the scores, as well as scatter plots to assess the linear relationship between them. Results: A linear distribution between the scores was found when the results were analysed using scatter plots. We were thus able to use the Pearson correlation coefficient to evaluate the relationship between each of the different postoperative scores. The correlation was found to be above 0.5 in all cases except for the comparison between the CAIT and the FAAM for the activities of daily living (0.39). We were, therefore, able to compare the results obtained and assess the relative concordance of the scoring systems. The results showed that the more specific the scale is, the worst the score is and inversely. So the CAIT and the CAIS appeared to be more severe than the AOFAS and the FAAM measuring the activities of daily living. The sports subscale of the FAAM demonstrated intermediate results. Conclusion: This study outlines a system to compare different postoperative scores commonly used to evaluate outcome after ankle stabilization surgery. The impact of this study is that it makes comparison of published studies easier, even though they use a variety of different clinical scores, thus facilitating better outcome analysis of operative techniques.
Resumo:
Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.
Resumo:
Peripheral nerve injury is a serious problem affecting significantly patients' life. Autografts are the "gold standard" used to repair the injury gap, however, only 50% of patients fully recover from the trauma. Artificial conduits are a valid alternative to repairing peripheral nerve. They aim at confining the nerve environment throughout the regeneration process, and providing guidance to axon outgrowth. Biocompatible materials have been carefully designed to reduce inflammation and scar tissue formation, but modifications of the inner lumen are still required in order to optimise the scaffolds. Biomicking the native neural tissue with extracellular matrix fillers or coatings showed great promises in repairing longer gaps and extending cell survival. In addition, extracellular matrix molecules provide a platform to further bind growth factors that can be released in the system over time. Alternatively, conduit fillers can be used for cell transplantation at the injury site, reducing the lag time required for endogenous Schwann cells to proliferate and take part in the regeneration process. This review provides an overview on the importance of extracellular matrix molecules in peripheral nerve repair.