2 resultados para High-dimensional data visualization

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal geometry is a fundamental approach for describing the complex irregularities of the spatial structure of point patterns. The present research characterizes the spatial structure of the Swiss population distribution in the three Swiss geographical regions (Alps, Plateau and Jura) and at the entire country level. These analyses were carried out using fractal and multifractal measures for point patterns, which enabled the estimation of the spatial degree of clustering of a distribution at different scales. The Swiss population dataset is presented on a grid of points and thus it can be modelled as a "point process" where each point is characterized by its spatial location (geometrical support) and a number of inhabitants (measured variable). The fractal characterization was performed by means of the box-counting dimension and the multifractal analysis was conducted through the Renyi's generalized dimensions and the multifractal spectrum. Results showed that the four population patterns are all multifractals and present different clustering behaviours. Applying multifractal and fractal methods at different geographical regions and at different scales allowed us to quantify and describe the dissimilarities between the four structures and their underlying processes. This paper is the first Swiss geodemographic study applying multifractal methods using high resolution data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper studies the probability of ruin of an insurer, if excess of loss reinsurance with reinstatements is applied. In the setting of the classical Cramer-Lundberg risk model, piecewise deterministic Markov processes are used to describe the free surplus process in this more general situation. It is shown that the finite-time ruin probability is both the solution of a partial integro-differential equation and the fixed point of a contractive integral operator. We exploit the latter representation to develop and implement a recursive algorithm for numerical approximation of the ruin probability that involves high-dimensional integration. Furthermore we study the behavior of the finite-time ruin probability under various levels of initial surplus and security loadings and compare the efficiency of the numerical algorithm with the computational alternative of stochastic simulation of the risk process. (C) 2011 Elsevier Inc. All rights reserved.