16 resultados para High-Strength concrete
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.
Resumo:
Purpose: To perform in vivo imaging of the cerebellum with an in-plane resolution of 120 mm to observe its cortical granular and molecular layers by taking advantage of the high signal-to-noise ratio and the increased magnetic susceptibility-related contrast available at high magnetic field strength such as 7 T. Materials and Methods: The study was approved by the institutional review board, and all patients provided written consent. Three healthy persons (two men, one woman; mean age, 30 years; age range, 28-31 years) underwent MR imaging with a 7-T system. Gradient-echo images (repetition time msec/echo time msec, 1000/25) of the human cerebellum were acquired with a nominal in-plane resolution of approximately 120 mum and a section thickness of 1 mm. Results: Structures with dimensions as small as 240 mum, such as the granular and molecular layers in the cerebellar cortex, were detected in vivo. The detection of these structures was confirmed by comparing the contrast obtained on T2*-weighted and phase images with that obtained on images of rat cerebellum acquired at 14 T with 30 mum in-plane resolution. Conclusion: In vivo cerebellar imaging at near-microscopic resolution is feasible at 7 T. Such detailed observation of an anatomic area that can be affected by a number of neurologic and psychiatric diseases, such as stroke, tumors, autism, and schizophrenia, could potentially provide newer markers for diagnosis and follow-up in patients with such pathologic conditions. (c) RSNA, 2010.
Resumo:
BACKGROUND: Reconstruction of the central aortic pressure wave from the noninvasive recording of the radial pulse with applanation tonometry has become a standard tool in the field of hypertension. It is not presently known whether recording the radial pulse on the dominant or the nondominant side has any effect on such reconstruction. METHOD: We carried out radial applanation tonometry on both forearms in young, healthy, male volunteers, who were either sedentary (n = 11) or high-level tennis players (n = 10). The purpose of including tennis players was to investigate individuals with extreme asymmetry between the dominant and nondominant upper limb. RESULTS: In the sedentary individuals, forearm circumference and handgrip strength were slightly larger on the dominant (mean +/- SD respectively 27.9 +/- 1.5 cm and 53.8 +/- 10 kg) than on nondominant side (27.3 +/- 1.6 cm, P < 0.001 vs. dominant, and 52.1 +/- 11 kg, P = NS). In the tennis players, differences between sides were more conspicuous (forearm circumference: dominant 28.0 +/- 1.7 cm nondominant 26.4 +/- 1.5 cm, P < 0.001; handgrip strength 61.4 +/- 10.8 vs. 53.4 +/- 9.7 kg, P < 0.001). We found that in both sedentary individuals and tennis players, the radial pulse had identical shape on both sides and, consequently, the reconstructed central aortic pressure waveforms, as well as derived indices of central pulsatility, were not dependent on the side where applanation tonometry was carried out. CONCLUSION: Evidence from individuals with maximal asymmetry of dominant vs. nondominant upper limb indicates that laterality of measurement is not a methodological issue for central pulse wave analysis carried out with radial applanation tonometry.
Resumo:
The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7T.
Resumo:
Generating a diverse T cell memory population through vaccination is a promising strategy to overcome pathogen epitope variability and tolerance to tumor Ags. The effector and memory pool becomes broad in TCR diversity by recruiting high- and low-affinity T cells. We wanted to determine which factors dictate whether a memory T cell pool has a broad versus focused repertoire. We find that inflammation increases the magnitude of low- and high-affinity T cell responses equally well, arguing against a synergistic effect of TCR and inflammatory signals on T cell expansion. We dissect the differential effects of TCR signal strength and inflammation and demonstrate that they control effector T cell survival in a bim-dependent manner. Importantly, bim-dependent cell death is overcome with a high Ag dose in the context of an inflammatory environment. Our data define the framework for the generation of a broad T cell memory pool to inform future vaccine design.
Resumo:
CONTEXT: Fatigue-induced alterations in foot mechanics may lead to structural overload and injury. OBJECTIVES: To investigate how a high-intensity running exercise to exhaustion modifies ankle plantar-flexor and dorsiflexor strength and fatigability, as well as plantar-pressure distribution in adolescent runners. DESIGN: Controlled laboratory study. SETTING: Academy research laboratory. PATIENTS OR OTHER PARTICIPANTS: Eleven male adolescent distance runners (age = 16.9 ± 2.0 years, height = 170.6 ± 10.9 cm, mass = 54.6 ± 8.6 kg) were tested. INTERVENTION(S): All participants performed an exhausting run on a treadmill. An isokinetic plantar-flexor and dorsiflexor maximal-strength test and a fatigue test were performed before and after the exhausting run. Plantar-pressure distribution was assessed at the beginning and end of the exhausting run. MAIN OUTCOME MEASURE(S): We recorded plantar-flexor and dorsiflexor peak torques and calculated the fatigue index. Plantar-pressure measurements were recorded 1 minute after the start of the run and before exhaustion. Plantar variables (ie, mean area, contact time, mean pressure, relative load) were determined for 9 selected regions. RESULTS: Isokinetic peak torques were similar before and after the run in both muscle groups, whereas the fatigue index increased in plantar flexion (28.1%; P = .01) but not in dorsiflexion. For the whole foot, mean pressure decreased from 1 minute to the end (-3.4%; P = .003); however, mean area (9.5%; P = .005) and relative load (7.2%; P = .009) increased under the medial midfoot, and contact time increased under the central forefoot (8.3%; P = .01) and the lesser toes (8.9%; P = .008). CONCLUSIONS: Fatigue resistance in the plantar flexors declined after a high-intensity running bout performed by adolescent male distance runners. This phenomenon was associated with increased loading under the medial arch in the fatigued state but without any excessive pronation.
Resumo:
High-intensity intermittent training in hypoxia: A double-blinded, placebo-controlled field study in youth football players. J Strength Cond Res 29(1): 226-237, 2015-This study examined the effects of 5 weeks (∼60 minutes per training, 2 d·wk) of run-based high-intensity repeated-sprint ability (RSA) and explosive strength/agility/sprint training in either normobaric hypoxia repeated sprints in hypoxia (RSH; inspired oxygen fraction [FIO2] = 14.3%) or repeated sprints in normoxia (RSN; FIO2 = 21.0%) on physical performance in 16 highly trained, under-18 male footballers. For both RSH (n = 8) and RSN (n = 8) groups, lower-limb explosive power, sprinting (10-40 m) times, maximal aerobic speed, repeated-sprint (10 × 30 m, 30-s rest) and repeated-agility (RA) (6 × 20 m, 30-s rest) abilities were evaluated in normoxia before and after supervised training. Lower-limb explosive power (+6.5 ± 1.9% vs. +5.0 ± 7.6% for RSH and RSN, respectively; both p < 0.001) and performance during maximal sprinting increased (from -6.6 ± 2.2% vs. -4.3 ± 2.6% at 10 m to -1.7 ± 1.7% vs. -1.3 ± 2.3% at 40 m for RSH and RSN, respectively; p values ranging from <0.05 to <0.01) to a similar extent in RSH and RSN. Both groups improved best (-3.0 ± 1.7% vs. -2.3 ± 1.8%; both p ≤ 0.05) and mean (-3.2 ± 1.7%, p < 0.01 vs. -1.9 ± 2.6%, p ≤ 0.05 for RSH and RSN, respectively) repeated-sprint times, whereas sprint decrement did not change. Significant interactions effects (p ≤ 0.05) between condition and time were found for RA ability-related parameters with very likely greater gains (p ≤ 0.05) for RSH than RSN (initial sprint: 4.4 ± 1.9% vs. 2.0 ± 1.7% and cumulated times: 4.3 ± 0.6% vs. 2.4 ± 1.7%). Maximal aerobic speed remained unchanged throughout the protocol. In youth highly trained football players, the addition of 10 repeated-sprint training sessions performed in hypoxia vs. normoxia to their regular football practice over a 5-week in-season period was more efficient at enhancing RA ability (including direction changes), whereas it had no additional effect on improvements in lower-limb explosive power, maximal sprinting, and RSA performance.
Resumo:
Background: Although there have been many studies on isokinetic shoulder exercises in evaluation and rehabilitation programs, the cardiovascular and metabolic responses of those modes of muscle strength exercises have been poorly investigated. Objective: To analyze cardiovascular and metabolic responses during a standardized test used to study the internal (IR) and external (ER) rotators maximal isokinetic strength. Methods: Four days after an incremental exercise test on cycle ergometer, ten healthy subjects performed an isokinetic shoulder strength evaluation with cardiovascular (Heart rate, HR) and metabolic gas exchange (&Vdot;O_{2}) analysis. The IR and ER isokinetic strength, measured in seated position with 45° of shoulder abduction in scapular plane, was evaluated concentrically at 60, 120 and 240°/s and eccentrically at 60°/s, for both shoulder sides. An endurance test with 30 repetitions at 240°/s was performed at the end of each shoulder side testing. Results: There was a significant increase of mean HR with isokinetic exercise (P< 0.05). Increases of HR was 42-71% over the resting values. During endurance testing, increases of HR was 77-105% over the resting values, and corresponded to 85-86% of the maximal HR during incremental test. Increase of &Vdot;O_{2} during isokinetic exercises was from 6-11 ml/min/kg to 20-43 ml/min/kg. Conclusion: This study performed significant cardiovascular and metabolic responses to isokinetic exercise of rotators shoulder muscles. A warm-up should be performed before maximal high-intensity isokinetic shoulder testing. Our results indicated that observation and supervision are important during testing and/or training sessions, especially in subjects with risk for cardiovascular disorders.
Resumo:
The ability to determine the location and relative strength of all transcription-factor binding sites in a genome is important both for a comprehensive understanding of gene regulation and for effective promoter engineering in biotechnological applications. Here we present a bioinformatically driven experimental method to accurately define the DNA-binding sequence specificity of transcription factors. A generalized profile was used as a predictive quantitative model for binding sites, and its parameters were estimated from in vitro-selected ligands using standard hidden Markov model training algorithms. Computer simulations showed that several thousand low- to medium-affinity sequences are required to generate a profile of desired accuracy. To produce data on this scale, we applied high-throughput genomics methods to the biochemical problem addressed here. A method combining systematic evolution of ligands by exponential enrichment (SELEX) and serial analysis of gene expression (SAGE) protocols was coupled to an automated quality-controlled sequence extraction procedure based on Phred quality scores. This allowed the sequencing of a database of more than 10,000 potential DNA ligands for the CTF/NFI transcription factor. The resulting binding-site model defines the sequence specificity of this protein with a high degree of accuracy not achieved earlier and thereby makes it possible to identify previously unknown regulatory sequences in genomic DNA. A covariance analysis of the selected sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism.
Resumo:
CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs.
Resumo:
Aim A debate exists as to whether present-day diversity gradients are governed by current environmental conditions or by changes in environmental conditions through time. Recent studies have shown that latitudinal richness gradients might be partially caused by incomplete post-glacial recolonization of high-latitude regions; this leads to the prediction that less mobile taxa should have steeper gradients than more mobile taxa. The aim of this study is to test this prediction. Location Europe. Methods We first assessed whether spatial turnover in species composition is a good surrogate for dispersal ability by measuring the proportion of wingless species in 19 European beetle clades and relating this value to spatial turnover (beta sim) of the clade. We then linearly regressed beta sim values of 21 taxa against the slope of their respective diversity gradients. Results A strong relationship exists between the proportion of wingless species and beta sim, and beta sim was found to be a good predictor of latitudinal richness gradients. Main conclusions Results are consistent with the prediction that poor dispersers have steeper richness gradients than good dispersers, supporting the view that current beetle diversity gradients in Europe are affected by post-glacial dispersal lags.
Resumo:
OBJECTIVE: To evaluate the variability of bond strength test results of adhesive systems (AS) and to correlate the results with clinical parameters of clinical studies investigating cervical restorations. MATERIALS AND METHODS: Regarding the clinical studies, the internal database which had previously been used for a meta-analysis on cervical restorations was updated with clinical studies published between 2008 and 2012 by searching the PubMed and SCOPUS databases. PubMed and the International Association for Dental Research abstracts online were searched for laboratory studies on microtensile, macrotensile and macroshear bond strength tests. The inclusion criteria were (1) dentin, (2) testing of at least four adhesive systems, (3) same diameter of composite and (4) 24h of water storage prior to testing. The clinical outcome variables were retention loss, marginal discoloration, detectable margins, and a clinical index comprising the three parameters by weighing them. Linear mixed models which included a random study effect were calculated for both, the laboratory and the clinical studies. The variability was assessed by calculating a ratio of variances, dividing the variance among the estimated bonding effects obtained in the linear mixed models by the sum of all variance components estimated in these models. RESULTS: Thirty-two laboratory studies fulfilled the inclusion criteria comprising 183 experiments. Of those, 86 used the microtensile test evaluating 22 adhesive systems (AS). Twenty-seven used the macrotensile test with 17 AS, and 70 used the macroshear test with 24 AS. For 28 AS the results from clinical studies were available. Microtensile and macrotensile (Spearman rho=0.66, p=0.007) were moderately correlated and also microtensile and macroshear (Spearman rho=0.51, p=0.03) but not macroshear and macrotensile (Spearman rho=0.34, p=0.22). The effect of the adhesive system was significant for microtensile and macroshear (p<0.001) but not for macrotensile. The effect of the adhesive system could explain 36% of the variability of the microtensile test, 27% of the macrotensile and 33% of the macroshear test. For the clinical trials, about 49% of the variability of retained restorations could be explained by the adhesive system. With respect to the correlation between bond strength tests and clinical parameters, only a moderate correlation between micro- and macrotensile test results and marginal discoloration was demonstrated. However, no correlation between these tests and a retention loss or marginal integrity was shown. The correlation improved when more studies were included compared to assessing only one study. SIGNIFICANCE: The high variability of bond strength test results highlights the need to establish individual acceptance levels for a given test institute. The weak correlation of bond-strength test results with clinical parameters leads to the conclusion that one should not rely solely on bond strength tests to predict the clinical performance of an adhesive system but one should conduct other laboratory tests like tests on the marginal adaptation of fillings in extracted teeth and the retention loss of restorations in non-retentive cavities after artificial aging.
Resumo:
The present study examined the relationship between depth of defense interpretations by therapists, and patient defensive functioning, on the therapeutic alliance in a sample of 36 patients undergoing short-term dynamic psychotherapy. Defense interpretation depth was defined as the degree to which therapist interpretations contained information regarding the motivation for patient defenses and historical origins of the defensive processes (Greensen, 1967). Mean depth of interpretation was compared between sessions that were identified beforehand as either high-alliance or low-alliance sessions using the Helping Alliance Questionnaire (HAq-II: Luborsky et al., 1996). Results indicated that defensive functioning was correlated to defense interpretation depth in low-alliance sessions. Moreover, mean depth of interpretation was also higher in low-alliance sessions, pointing to the possible "destabilizing" effects that these interpretations may have on both defensive functioning and the therapeutic alliance. These results are discussed within the context of previous studies of therapeutic technique in dynamic psychotherapy.
Resumo:
Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses.
Resumo:
1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.