12 resultados para High harmonic emission

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plants attacked by herbivores have evolved different strategies that fend off their enemies. Insect eggs deposited on leaves have been shown to inhibit further oviposition through visual or chemical cues. In some plant species, the volatile methyl salicylate (MeSA) repels gravid insects but whether it plays the same role in the model species Arabidopsis thaliana is currently unknown. Here we showed that Pieris brassicae butterflies laid fewer eggs on Arabidopsis plants that were next to a MeSA dispenser or on plants with constitutively high MeSA emission than on control plants. Surprisingly, the MeSA biosynthesis mutant bsmt1-1 treated with egg extract was still repellent to butterflies when compared to untreated bsmt1-1. Moreover, the expression of BSMT1 was not enhanced by egg extract treatment but was induced by herbivory. Altogether, these results provide evidence that the deterring activity of eggs on gravid butterflies is independent of MeSA emission in Arabidopsis, and that MeSA might rather serve as a deterrent in plants challenged by feeding larvae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: To assess the failure pattern observed after (18)F fluoroethyltyrosine (FET) planning after chemo- and radiotherapy (RT) for high-grade glioma. METHODS: All patients underwent prospectively RT planning using morphological gross tumour volumes (GTVs) and biological tumour volumes (BTVs). The post-treatment recurrence tumour volumes (RTVs) of 10 patients were transferred on their CT planning. First, failure patterns were defined in terms of percentage of RTV located outside the GTV and BTV. Second, the location of the RTV with respect to the delivered dose distribution was assessed using the RTV's DVHs. Recurrences with >95% of their volume within 95% isodose line were considered as central recurrences. Finally, the relationship between survival and GTV/BTV mismatches was assessed. RESULTS: The median percentages of RTV outside the GTV and BTV were 41.8% (range, 10.5-92.4) and 62.8% (range, 34.2-81.1), respectively. The majority of recurrences (90%) were centrally located. Using a composite target volume planning formalism, the degree of GTV and BTV mismatch did not correlate with survivorship. CONCLUSIONS: The observed failure pattern after FET-PET planning and chemo-RT is primarily central. The target mismatch-survival data suggest that using FET-PET planning may counteract the possibility of BTV-related progression, which may have a detrimental effect on survival.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of (18)F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. METHODS: Nineteen patients with malignant glioma were included into a prospective protocol using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual disease after surgery. Planning was performed using the clinical target volume (CTV = GTV union or logical sum BTV) and planning target volume (PTV = CTV + 20 mm). First, the interrater reliability for BTV delineation was assessed among three observers. Second, the BTV and GTV were quantified and compared. Finally, the geometrical relationships between GTV and BTV were assessed. RESULTS: Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient 0.9). Although, BTVs and GTVs were not significantly different (p = 0.9), CTVs (mean 57.8 +/- 30.4 cm(3)) were significantly larger than BTVs (mean 42.1 +/- 24.4 cm(3); p < 0.01) or GTVs (mean 38.7 +/- 25.7 cm(3); p < 0.01). In 13 (68%) and 6 (32%) of 19 patients, FET uptake extended >or= 10 and 20 mm from the margin of the gadolinium enhancement. CONCLUSION: Using FET, the interrater reliability had excellent agreement for BTV delineation. With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a majority of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Furosemide (FD: Lasix) is a loop diuretic which strongly increases both urine flow and electrolyte urinary excretion. Healthy volunteers were administered 40 mg orally (dissolved in water) and concentrations of FD were determined in serum and urine for up to 6 h for eight subjects, who absorbed water at a rate of 400 ml/h. Quantification was performed by HPLC with fluorescence detection (excitation at 233 nm, emission at 389 nm) with a limit of detection of 5 ng/ml for a 300-microliters sample. The elution of FD was completed within 4 min using a gradient of acetonitrile concentration rising from 30 to 50% in 0.08 M phosphoric acid. The delay to the peak serum concentration ranged from 60 to 120 min. FD was still easily measurable in the sera from all subjects 6 h after administration. In urine, the excretion rates reached their maximum between 1 and 3 h. The total amount of FD excreted in the urine averaged 11.2 mg (range 7.6-14.0 mg), with a mean urine volume of 3024 ml (range 2620-3596 ml). Moreover, the urine density was lower than 1.010 (recommended as an upper limit in doping analysis to screen diuretics) only for 2 h. An additional volunteer was administered 40 mg of FD and his urine was collected over a longer period. FD was still detectable 48 h after intake. Gas chromatography-mass spectrometry with different types of ionization was used to confirm the occurrence of FD after permethylation of the extract. Negative-ion chemical ionization, with ammonia as reactant gas, was found to be the most sensitive method of detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet's membrane, in the posterior cornea. METHODOLOGY/PRINCIPAL FINDINGS: We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet's membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats. CONCLUSIONS/SIGNIFICANCE: Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily generalized to other structural remodeling of the cornea and SHG microscopy should prove to be invaluable for in vivo corneal pathological studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Quantification of myocardial blood flow (MBF) with generator-produced (82)Rb is an attractive alternative for centres without an on-site cyclotron. Our aim was to validate (82)Rb-measured MBF in relation to that measured using (15)O-water, as a tracer 100% of which can be extracted from the circulation even at high flow rates, in healthy control subject and patients with mild coronary artery disease (CAD). METHODS: MBF was measured at rest and during adenosine-induced hyperaemia with (82)Rb and (15)O-water PET in 33 participants (22 control subjects, aged 30 ± 13 years; 11 CAD patients without transmural infarction, aged 60 ± 13 years). A one-tissue compartment (82)Rb model with ventricular spillover correction was used. The (82)Rb flow-dependent extraction rate was derived from (15)O-water measurements in a subset of 11 control subjects. Myocardial flow reserve (MFR) was defined as the hyperaemic/rest MBF. Pearson's correlation r, Bland-Altman 95% limits of agreement (LoA), and Lin's concordance correlation ρ (c) (measuring both precision and accuracy) were used. RESULTS: Over the entire MBF range (0.66-4.7 ml/min/g), concordance was excellent for MBF (r = 0.90, [(82)Rb-(15)O-water] mean difference ± SD = 0.04 ± 0.66 ml/min/g, LoA = -1.26 to 1.33 ml/min/g, ρ(c) = 0.88) and MFR (range 1.79-5.81, r = 0.83, mean difference = 0.14 ± 0.58, LoA = -0.99 to 1.28, ρ(c) = 0.82). Hyperaemic MBF was reduced in CAD patients compared with the subset of 11 control subjects (2.53 ± 0.74 vs. 3.62 ± 0.68 ml/min/g, p = 0.002, for (15)O-water; 2.53 ± 1.01 vs. 3.82 ± 1.21 ml/min/g, p = 0.013, for (82)Rb) and this was paralleled by a lower MFR (2.65 ± 0.62 vs. 3.79 ± 0.98, p = 0.004, for (15)O-water; 2.85 ± 0.91 vs. 3.88 ± 0.91, p = 0.012, for (82)Rb). Myocardial perfusion was homogeneous in 1,114 of 1,122 segments (99.3%) and there were no differences in MBF among the coronary artery territories (p > 0.31). CONCLUSION: Quantification of MBF with (82)Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using (15)O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. (82)Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This clinical study was based on experimental results obtained in nude mice grafted with human colon carcinoma, showing that injected 131I-labeled F(ab')2 and Fab fragments from high affinity anti-carcinoembryonic antigen (CEA) monoclonal antibodies (MAb) gave markedly higher ratios of tumor to normal tissue localization than intact MAb. 31 patients with known colorectal carcinoma, including 10 primary tumors, 13 local tumor recurrences, and 21 metastatic involvements, were injected with 123I-labeled F(ab')2 (n = 14) or Fab (n = 17) fragments from MAb anti-CEA. The patients were examined by emission-computerized tomography (ECT) at 6, 24, and sometimes 48 h after injection using a rotating dual head scintillation camera. All 23 primary tumors and local recurrences except one were clearly visualized on at least two sections of different tomographic planes. Interestingly, nine of these patients had almost normal circulating CEA levels, and three of the visualized tumors weighed only 3-5 g. Among 19 known metastatic tumor involvements, 14 were correctly localized by ECT. Two additional liver and several bone metastases were discovered by immunoscintigraphy. Altogether, 86% of the tumor sites were detected, 82% with F(ab')2 and 89% with Fab fragments. The contrast of the tumor images obtained with Fab fragments suggests that this improved method of immunoscintigraphy has the potential to detect early tumor recurrences and thus to increase the survival of patients. The results of this retrospective study, however, should be confirmed in a prospective study before this method can be recommended for the routine diagnosis of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Acetate brain metabolism has the particularity to occur specifically in glial cells. Labeling studies, using acetate labeled either with 13C (NMR) or 11C (PET), are governed by the same biochemical reactions and thus follow the same mathematical principles. In this study, the objective was to adapt an NMR acetate brain metabolism model to analyse [1-11C]acetate infusion in rats. Methods: Brain acetate infusion experiments were modeled using a two-compartment model approach used in NMR.1-3 The [1-11C]acetate labeling study was done using a beta scintillator.4 The measured radioactive signal represents the time evolution of the sum of all labeled metabolites in the brain. Using a coincidence counter in parallel, an arterial input curve was measured. The 11C at position C-1 of acetate is metabolized in the first turn of the TCA cycle to the position 5 of glutamate (Figure 1A). Through the neurotransmission process, it is further transported to the position 5 of glutamine and the position 5 of neuronal glutamate. After the second turn of the TCA cycle, tracer from [1-11C]acetate (and also a part from glial [5-11C]glutamate) is transferred to glial [1-11C]glutamate and further to [1-11C]glutamine and neuronal glutamate through the neurotransmission cycle. Brain poster session: oxidative mechanisms S460 Journal of Cerebral Blood Flow & Metabolism (2009) 29, S455-S466 Results: The standard acetate two-pool PET model describes the system by a plasma pool and a tissue pool linked by rate constants. Experimental data are not fully described with only one tissue compartment (Figure 1B). The modified NMR model was fitted successfully to tissue time-activity curves from 6 single animals, by varying the glial mitochondrial fluxes and the neurotransmission flux Vnt. A glial composite rate constant Kgtg=Vgtg/[Ace]plasma was extracted. Considering an average acetate concentration in plasma of 1 mmol/g5 and the negligible additional amount injected, we found an average Vgtg = 0.08±0.02 (n = 6), in agreement with previous NMR measurements.1 The tissue time-activity curve is dominated by glial glutamate and later by glutamine (Figure 1B). Labeling of neuronal pools has a low influence, at least for the 20 mins of beta-probe acquisition. Based on the high diffusivity of CO2 across the blood-brain barrier; 11CO2 is not predominant in the total tissue curve, even if the brain CO2 pool is big compared with other metabolites, due to its strong dilution through unlabeled CO2 from neuronal metabolism and diffusion from plasma. Conclusion: The two-compartment model presented here is also able to fit data of positron emission experiments and to extract specific glial metabolic fluxes. 11C-labeled acetate presents an alternative for faster measurements of glial oxidative metabolism compared to NMR, potentially applicable to human PET imaging. However, to quantify the relative value of the TCA cycle flux compared to the transmitochondrial flux, the chemical sensitivity of NMR is required. PET and NMR are thus complementary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ectopic ACTH Cushing's syndrome (EAS) is often caused by neuroendocrine tumors (NETs) of lungs, pancreas, thymus, and other less frequent locations. Localizing the source of ACTH can be challenging. A 64-year-old man presented with rapidly progressing fatigue, muscular weakness, and dyspnea. He was in poor condition and showed facial redness, proximal amyotrophy, and bruises. Laboratory disclosed hypokalemia, metabolic alkalosis, and markedly elevated ACTH and cortisol levels. Pituitary was normal on magnetic resonance imaging (MRI), and bilateral inferior petrosal sinus blood sampling with corticotropin-releasing hormone stimulation showed no significant central-to-periphery gradient of ACTH. Head and neck, thoracic and abdominal computerized tomography (CT), MRI, somatostatin receptor scintigraphy (SSRS), and (18)F-deoxyglucose-positron emission tomography (FDG-PET) failed to identify the primary tumor. (18)F-dihydroxyphenylalanine (F-DOPA)-PET/CT unveiled a 20-mm nodule in the jejunum and a metastatic lymph node. Segmental jejunum resection showed two adjacent NETs, measuring 2.0 and 0.5 cm with a peritoneal metastasis. The largest tumor expressed ACTH in 30% of cells. Following surgery, after a transient adrenal insufficiency, ACTH and cortisol levels returned to normal values and remain normal over a follow-up of 26 months. Small mid-gut NETs are difficult to localize on CT or MRI, and require metabolic imaging. Owing to low mitotic activity, NETs are generally poor candidates for FDG-PET, whereas SSRS shows poor sensitivity in EAS due to intrinsically low tumor concentration of type-2 somatostatin receptors (SST2) or to receptor down regulation by excess cortisol. However, F-DOPA-PET, which is related to amine precursor uptake by NETs, has been reported to have high positive predictive value for occult EAS despite low sensitivity, and constitutes a useful alternative to more conventional methods of tumor localization. LEARNING POINTS: Uncontrolled high cortisol levels in EAS can be lethal if untreated.Surgical excision is the keystone of NETs treatment, thus tumor localization is crucial.Most cases of EAS are caused by NETs, which are located mainly in the lungs. However, small gut NETs are elusive to conventional imaging and require metabolic imaging for detection.FDG-PET, based on tumor high metabolic rate, may not detect NETs that have low mitotic activity. SSRS may also fail, due to absent or low concentration of SST2, which may be down regulated by excess cortisol.F-DOPA-PET, based on amine-precursor uptake, can be a useful method to localize the occult source of ACTH in EAS when other methods have failed.