22 resultados para Heuristics

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple Heuristics in a Social World invites readers to discover the simple heuristics that people use to navigate the complexities and surprises of environments populated with others. The social world is a terrain where humans and other animals compete with conspecifics for myriad resources, including food, mates, and status, and where rivals grant the decision maker little time for deep thought, protracted information search, or complex calculations. Yet, the social world also encompasses domains where social animals such as humans can learn from one another and can forge alliances with one another to boost their chances of success. According to the book's thesis, the undeniable complexity of the social world does not dictate cognitive complexity as many scholars of rationality argue. Rather, it entails circumstances that render optimization impossible or computationally arduous: intractability, the existence of incommensurable considerations, and competing goals. With optimization beyond reach, less can be more. That is, heuristics--simple strategies for making decisions when time is pressing and careful deliberation an unaffordable luxury--become indispensible mental tools. As accurate as or even more accurate than complex methods when used in the appropriate social environments, these heuristics are good descriptive models of how people make many decisions and inferences, but their impressive performance also poses a normative challenge for optimization models. In short, the Homo socialis may prove to be a Homo heuristicus whose intelligence reflects ecological rather than logical rationality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tiwi people of northern Australia have managed natural resources continuously for 6000-8000 years. Tiwi management objectives and outcomes may reflect how they gather information about the environment. We qualitatively analyzed Tiwi documents and management techniques to examine the relation between the social and physical environment of decision makers and their decision-making strategies. We hypothesized that principles of bounded rationality, namely, the use of efficient rules to navigate complex decision problems, explain how Tiwi managers use simple decision strategies (i.e., heuristics) to make robust decisions. Tiwi natural resource managers reduced complexity in decision making through a process that gathers incomplete and uncertain information to quickly guide decisions toward effective outcomes. They used management feedback to validate decisions through an information loop that resulted in long-term sustainability of environmental use. We examined the Tiwi decision-making processes relative to management of barramundi (Lates calcarifer) fisheries and contrasted their management with the state government's management of barramundi. Decisions that enhanced the status of individual people and their attainment of aspiration levels resulted in reliable resource availability for Tiwi consumers. Different decision processes adopted by the state for management of barramundi may not secure similarly sustainable outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: A clinical decision rule to improve the accuracy of a diagnosis of influenza could help clinicians avoid unnecessary use of diagnostic tests and treatments. Our objective was to develop and validate a simple clinical decision rule for diagnosis of influenza. METHODS: We combined data from 2 studies of influenza diagnosis in adult outpatients with suspected influenza: one set in California and one in Switzerland. Patients in both studies underwent a structured history and physical examination and had a reference standard test for influenza (polymerase chain reaction or culture). We randomly divided the dataset into derivation and validation groups and then evaluated simple heuristics and decision rules from previous studies and 3 rules based on our own multivariate analysis. Cutpoints for stratification of risk groups in each model were determined using the derivation group before evaluating them in the validation group. For each decision rule, the positive predictive value and likelihood ratio for influenza in low-, moderate-, and high-risk groups, and the percentage of patients allocated to each risk group, were reported. RESULTS: The simple heuristics (fever and cough; fever, cough, and acute onset) were helpful when positive but not when negative. The most useful and accurate clinical rule assigned 2 points for fever plus cough, 2 points for myalgias, and 1 point each for duration <48 hours and chills or sweats. The risk of influenza was 8% for 0 to 2 points, 30% for 3 points, and 59% for 4 to 6 points; the rule performed similarly in derivation and validation groups. Approximately two-thirds of patients fell into the low- or high-risk group and would not require further diagnostic testing. CONCLUSION: A simple, valid clinical rule can be used to guide point-of-care testing and empiric therapy for patients with suspected influenza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.