2 resultados para Herbert Gold Mine

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ajjanahalli gold mine is spatially associated with a Late Archean craton-scale shear zone in the eastern Chitradurga greenstone belt of the Dharwar craton, India. Gold mineralization is hosted by an similar to100-m-wide antiform in a banded iron formation. Original magnetite and siderite are replaced by a peak metamorphic alteration assemblage of chlorite, stilpnomelane, minnesotaite, sericite, ankerite, arsenopyrite, pyrite, pyrrhotite, and gold at ca. 300degrees to 350degreesC. Elements enriched in the banded iron formation include Ca, Mg, C, S, An, As, Bi. Cu, Sb, Zn, Pb, Se, Ag, and Te, whereas in the wall rocks As, Cu, Zn, Bi, Ag, and An are only slightly enriched. Strontium correlates with CaO, MgO, CO2, and As, which indicates cogenetic formation of arsenopyrite and Mg-Ca carbonates. The greater extent of alteration in the Fe-rich banded iron formation layers than in the wall rock reflects the greater reactivity of the banded iron formation layers. The ore fluids, as interpreted from their isotopic composition (delta(18)O = 6.5-8.5parts per thousand; initial Sr-87/Sr-86 = 0.7068-0.7078), formed by metamorphic devolatilization of deeper levels of the Chitradurga greenstone belt. Arsenopyrite, chalcopyrite, and pyrrhotite have delta(34)S values within a narrow range between 2.1 and 2.7 per mil, consistent with a sulfur source in Chitradurga greenstone belt lithologies. Based on spatial and temporal relationships between mineralization, local structure development, and sinistral strike-slip deformation in the shear zone at the eastern contact of the Chitradurga greenstone belt, we suggest that the Ajjanahalli gold mineralization formed by fluid infiltration into a low strain area within the first-order structure. The ore fluids were transported along this shear zone into relatively shallow crustal levels during lateral terrane accretion and a change from thrust to transcurrent tectonics. Based on this model of fluid flow, exploration should focus on similar low strain areas or potentially connected higher order splays of the first-order shear zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stable isotope composition of waters (delta H-2, delta O-18) can be used as a natural tracer of hydrologic processes in systems affected by acid mine drainage. We investigated the delta H-2 and delta O-18 values of pore waters from four oxidizing sulfidic mine tailings impoundments in different climatic regions of Chile (Piuquenes at La Andina with Alpine climate, Cauquenes and Caren at El Teniente with Mediterranean climate, and Talabre at the Chuquicamata deposit with hyperarid climate). No clear relationship was found between altitude and isotopic composition. The observed displacement of the tailings pore waters from the local meteoric water line toward higher delta O-18 values (by similar to +2% delta O-18 relative to delta H-2) is partly due to water-rock interaction processes, including hydration and O-isotope exchange with sulfates and Fe(III) oxyhydroxides produced by pyrite oxidation. In most tailings, from the saturated zone toward the surface, isotopically different zones can be distinguished. Zone I is characterized by an upward depletion of H-2 and O-18 in the pore waters from the saturated zone and the lowermost vadose zone, due to ascending diffused isotopically light water triggered by the constant loss of water vapor by evaporation at the surface. In zone II, the capillary flow of a mix of vapor and liquid water causes an evaporative isotopic enrichment in H-2 and O-18. At the top of the tailings in dry climate a zone III between the capillary zone and the surface contains isotopically light diffused and atmospheric water vapor. In temperate climates, the upper part of the profile is affected by recent rainfall and zone III may not differ isotopically from zone II.