7 resultados para Henriksson, Lea
em Université de Lausanne, Switzerland
Resumo:
Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.
Resumo:
BACKGROUND: Most patients with glioblastoma are older than 60 years, but treatment guidelines are based on trials in patients aged only up to 70 years. We did a randomised trial to assess the optimum palliative treatment in patients aged 60 years and older with glioblastoma. METHODS: Patients with newly diagnosed glioblastoma were recruited from Austria, Denmark, France, Norway, Sweden, Switzerland, and Turkey. They were assigned by a computer-generated randomisation schedule, stratified by centre, to receive temozolomide (200 mg/m(2) on days 1-5 of every 28 days for up to six cycles), hypofractionated radiotherapy (34·0 Gy administered in 3·4 Gy fractions over 2 weeks), or standard radiotherapy (60·0 Gy administered in 2·0 Gy fractions over 6 weeks). Patients and study staff were aware of treatment assignment. The primary endpoint was overall survival. Analyses were done by intention to treat. This trial is registered, number ISRCTN81470623. FINDINGS: 342 patients were enrolled, of whom 291 were randomised across three treatment groups (temozolomide n=93, hypofractionated radiotherapy n=98, standard radiotherapy n=100) and 51 of whom were randomised across only two groups (temozolomide n=26, hypofractionated radiotherapy n=25). In the three-group randomisation, in comparison with standard radiotherapy, median overall survival was significantly longer with temozolomide (8·3 months [95% CI 7·1-9·5; n=93] vs 6·0 months [95% CI 5·1-6·8; n=100], hazard ratio [HR] 0·70; 95% CI 0·52-0·93, p=0·01), but not with hypofractionated radiotherapy (7·5 months [6·5-8·6; n=98], HR 0·85 [0·64-1·12], p=0·24). For all patients who received temozolomide or hypofractionated radiotherapy (n=242) overall survival was similar (8·4 months [7·3-9·4; n=119] vs 7·4 months [6·4-8·4; n=123]; HR 0·82, 95% CI 0·63-1·06; p=0·12). For age older than 70 years, survival was better with temozolomide and with hypofractionated radiotherapy than with standard radiotherapy (HR for temozolomide vs standard radiotherapy 0·35 [0·21-0·56], p<0·0001; HR for hypofractionated vs standard radiotherapy 0·59 [95% CI 0·37-0·93], p=0·02). Patients treated with temozolomide who had tumour MGMT promoter methylation had significantly longer survival than those without MGMT promoter methylation (9·7 months [95% CI 8·0-11·4] vs 6·8 months [5·9-7·7]; HR 0·56 [95% CI 0·34-0·93], p=0·02), but no difference was noted between those with methylated and unmethylated MGMT promoter treated with radiotherapy (HR 0·97 [95% CI 0·69-1·38]; p=0·81). As expected, the most common grade 3-4 adverse events in the temozolomide group were neutropenia (n=12) and thrombocytopenia (n=18). Grade 3-5 infections in all randomisation groups were reported in 18 patients. Two patients had fatal infections (one in the temozolomide group and one in the standard radiotherapy group) and one in the temozolomide group with grade 2 thrombocytopenia died from complications after surgery for a gastrointestinal bleed. INTERPRETATION: Standard radiotherapy was associated with poor outcomes, especially in patients older than 70 years. Both temozolomide and hypofractionated radiotherapy should be considered as standard treatment options in elderly patients with glioblastoma. MGMT promoter methylation status might be a useful predictive marker for benefit from temozolomide. FUNDING: Merck, Lion's Cancer Research Foundation, University of Umeå, and the Swedish Cancer Society.
Resumo:
BACKGROUND: Despite advances in treatment, survival of patients with GBM over 60 years is still often less than 1 year. In the perspective of a short expected survival, the quality of the remaining life and the effects of therapy on health-related quality of life (HRQoL) should be given special emphasis when recommending treatment for the individual patients. Several studies have focused on survival of the elderly, but few data are available on HRQoL for different treatments. In a randomized trial, we compared survival and HRQoL for 3 treatment options, 6 weeks of RT, vs hypofractionated RT, or chemotherapy with TMZ. MATERIALS AND METHODS: Newly diagnosed GBM patients, age ≥60 years with PS 0-2, were randomized to either standard RT (60 Gy in 2-Gy fractions over 6 weeks), hypofractionated RT (34 Gy in 3.4-Gy fractions over 2 weeks), or 6 cycles of chemotherapy with TMZ (200 mg/m2 day 1-5 every 28 days). QoL was determined by the EORTC QLQ 30 questionnaire and the Brain Cancer Module at inclusion, before start of therapy, at 6 weeks, 3 months, and 6 months after start of treatment. Patients were followed until death. The primary study endpoint was overall survival (OS) and secondary objectives were HRQoL, neurologic symptom control, and safety. RESULTS: A total of 342 patients were included and 292 patients were randomized between the 3 treatment options and 50 patients between hypofractionated RT and TMZ. Median age was 70 years (range 60-92) with 58% being male. Performance status was 0-1 for 75% of patients and 73% had undergone surgical resection. CONCLUSION: The results from the HRQoL analysis of this trial will be presented together with survival data at the upcoming EANO meeting.
Resumo:
Carcinoembryonic antigen (CEA) was purified from primary tumour or from hepatic metastases obtained from ten cases of carcinoma of the colon. In nine cases the blood group antigens A, B, Lea or Leb were detected in CEA preparations by the binding of 125I-labelled CEA by blood group antibodies. The extent of binding appeared to preclude simple contamination of CEA preparations by blood group glycoprotein. In all cases the blood group antigens detected were consistent with the patients' known blood groups. Blood group I and i activities were not detected. It is concluded that the determinants of A, B and Lewis antigens and of CEA share the same glycoprotein carrier molecules.
Resumo:
Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
Resumo:
The management of primary CNS lymphoma is one of the most controversial topics in neuro-oncology because of the complexity of the disease and the very few controlled studies available. In 2013, the European Association of Neuro-Oncology created a multidisciplinary task force to establish evidence-based guidelines for immunocompetent adults with primary CNS lymphoma. In this Review, we present these guidelines, which provide consensus considerations and recommendations for diagnosis, assessment, staging, and treatment of primary CNS lymphoma. Specifically, we address aspects of care related to surgery, systemic and intrathecal chemotherapy, intensive chemotherapy with autologous stem-cell transplantation, radiotherapy, intraocular manifestations, and management of elderly patients. The guidelines should aid clinicians in their daily practice and decision making, and serve as a basis for future investigations in neuro-oncology.