22 resultados para Heavy metal ions
em Université de Lausanne, Switzerland
Resumo:
Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd2+, Hg2+ and Pb2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC(50) in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.
Resumo:
A two stage sampling strategy is necessary in order to optimize the study of distribution of pollution in soils and groundwater. First, detailed sampling from a limited area coupled with statistical analysis of the data are used to determine the microvariability of the parameter(s). The results from this detailed analysis are then used to calculate the optimal spacing between samples for the larger scale study. This two stage sampling strategy can result in significant financial savings during subsequent soil or groundwater remediation. This combined sampling and statistical analysis approach is illustrated with an example from a heavy metal contaminated site.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). (Demirdjian et al., 2005). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Size distributions indicated that particles are within the nanometric range. Surface characteristics of sampled particles varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean levels of 8- hydroxy-2'-deoxyguanosine and several aldehydes (hexanal, heptanal, octanal, nonanal) increased during two consecutive days of exposure for non-smokers. In order to bring some insight into the relation between the particulate characteristics and the formation of ROS by-products, biomarkers levels will be discussed in relation with exposure variables.
Resumo:
Purpose:To identify the gene causing rod-cone dystrophy/amelogenesis imperfecta Methods:Homozygosity mapping was performed using the Affymetrix 50K XbaI array in one family and candidate genes in the linked interval were sequenced with ABI Dye Terminator, vers. 1 in the index patient of 3 families. The identified mutations were screened in normal control individuals. Expression analyses were performed on RNA extracted from the brain, various parts of the eye and teeth; immunostaining was done on mouse eyes and jaw and knock-down experiments were carried out in zebrafish embroys. Results:Sequencing the coding regions of ancient conserved domain protein 4 (CNNM4), a metal ions transporter, revealed a 1-base pair duplication (p.L438fs) in family A, a p.R236Q mutation in family B and a p.L324P in family C. All these mutations were homozygous and involved very conserved amino acids in paralogs and orthologs. Immunostaining and RT-PCR confirmed that CNNM4 was strongly expressed in various parts of the eye and in the teeth. Morpholino experiments in zebrafish showed a loss of ganglion cells at 5 days post fertilization. Conclusions:The rod-cone dystrophy/amelogenesis imperfecta syndrome is caused by mutation in CNNM4 and is due to aberrant metal ion homeostasis.
Resumo:
There is increasing evidence that modular neck stems are prone to corrosion-related complications. Recent studies showed elevated metal ions levels and occasional pseudotumor formation in patients with such implants. The purpose of this study was to compare systemic metal-ion levels in patients after primary THA with modular neck stems to those of patients after non-modular implants. To our knowledge, this is the first cohort study including a control group, THA without CoCr heads and dry-assembled neck-stem connections. Methods: 50 patients after THA at a minimum follow-up of 1 year have been selected for the study. Patients with multiple prosthesis or other implants have been deselected. All received a cementless SPS stem from Symbios (Ti6Al4V). 40 patients have the modular neck (CoCr) version and 10 a monobloc version. All bearings were either ceramic-ceramic or ceramic-polyethylene to minimize other sources of CoCr ion release. In the modular group, the neck was chosen pre-operatively based on a 3D planning, allowing for a dry assembly of the stem and neck on the back table before implantation. A plasma system coupled to mass spectrometry was used for a complete elementary quantification in blood and serum separately. Clinical outcome was measured using the Oxford Hip Score. Results : Complete data sets of 29 patients (24 in the modular neck-group (10male, mean age 63y, 35-84y) and 5 in the monobloc-group (3 male, 69 y, 51-83y) are available to date. Mean Co blood levels were .95 ug/L (.14-12.4) in the modular group vs .27 ug/L (.10-.73) in the monobloc group (p=.2). Respective values for Cr were significantly higher in the modular group (.99 g/L; range .75-1.21) compared to those in the monobloc group (.74 g/L ;.62-.86; p=.001). No significant difference was found when comparing serum levels. 5/24 patients had Co levels above 1 g/L (12/24 for Cr), which is by some considered as a relevant elevation. The maximum Co level was measured in an asymptomatic patient. The Oxford Hip Scores were similar in both groups. Conclusion: Cr levels were significantly elevated in the modular neck group compared to those in the monobloc group. 1/24 patients with a modular prosthesis exhibited Co levels, which are beyond the threshold accepted even for metal-on-metal bearing couples. These results have contributed to our decision to abandon the use of modular neck stems. Routine follow-up including annual measurements of systemic CoCr concentrations should be considered.
Resumo:
Exposure to PM10 and PM2.5 (particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm, respectively) is associated with a range of adverse health effects, including cancer, pulmonary and cardiovascular diseases. Surface characteristics (chemical reactivity, surface area) are considered of prime importance to understand the mechanisms which lead to harmful effects. A hypothetical mechanism to explain these adverse effects is the ability of components (organics, metal ions) adsorbed on these particles to generate Reactive Oxygen Species (ROS), and thereby to cause oxidative stress in biological systems (Donaldson et al., 2003). ROS can attack almost any cellular structure, like DNA or cellular membrane, leading to the formation of a wide variety of degradation products which can be used as a biomarker of oxidative stress. The aim of the present research project is to test whether there is a correlation between the exposure to Diesel Exhaust Particulate (DEP) and the oxidative stress status. For that purpose, a survey has been conducted in real occupational situations where workers were exposed to DEP (bus depots). Different exposure variables have been considered: - particulate number, size distribution and surface area (SMPS); - particulate mass - PM2.5 and PM4 (gravimetry); - elemental and organic carbon (coulometry); - total adsorbed heavy metals - iron, copper, manganese (atomic adsorption); - surface functional groups present on aerosols (Knudsen flow reactor). Several biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and several aldehydes) have been determined either in urine or serum of volunteers. Results obtained during the sampling campaign in several bus depots indicated that the occupational exposure to particulates in these places was rather low (40-50 μg/m3 for PM4). Bimodal size distributions were generally observed (5 μm and <1 μm). Surface characteristics of PM4 varied strongly, depending on the bus depot. They were usually characterized by high carbonyl and low acidic sites content. Among the different biomarkers which have been analyzed within the framework of this study, mean urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly (p<0.05) during two consecutive days of exposure for non-smoker workers. On the other hand, no statistically significant differences were observed for serum levels of hexanal, nonanal and 4- hydroxy-nonenal (p>0.05). Biomarkers levels will be compared to exposure variables to gain a better understanding of the relation between the particulate characteristics and the formation of ROS by-products. This project is financed by the Swiss State Secretariat for Education and Research. It is conducted within the framework of the COST Action 633 "Particulate Matter - Properties Related to Health Effects".
Resumo:
Although the knowledge on heavy metal hyperaccumulation mechanisms is increasing, the genetic basis of cadmium (Cd) hyperaccurnulation remains to be elucidated. Thlaspi caerulescens is an attractive model since Cd accumulation polymorphism observed in this species suggests genetic differences between populations with low versus high Cd hyperaccumulation capacities. In our study, a methodology is proposed to analyse at a regional scale the genetic differentiation of T. caerulescens natural populations in relation to Cd hyperaccumulation capacity while controlling for different environmental, soil, plant parameters and geographic origins of populations. Twenty-two populations were characterised with AFLP markers and cpDNA polymorphism. Over all loci, a partial Mantel test showed no significant genetic structure with regard to the Cd hyperaccumulation capacity. Nevertheless, when comparing the marker variation to a neutral model, seven AFLP fragments (9% of markers) were identified as presenting particularly high genetic differentiation between populations with low and high Cd hyperaccurnulation capacity. Using simulations, the number of outlier loci was showed to be significantly higher than expected at random. These loci presented a genetic structure linked to Cd hyperaccumulation capacity independently of the geography, environment, soil parameters and Zn, Pb, Fe and Cu concentrations in plants. Using a canonical correspondence analysis, we identified three of them as particularly related to the Cd hyperaccumutation capacity. This study demonstrates that populations with low and high hyperaccurnulation capacities can be significantly distinguished based on molecular data. Further investigations with candidate genes and mapped markers may allow identification and characterization of genomic regions linked to factors involved in Cd hyperaccumulation.
Resumo:
SUMMARY Heavy metal presence in the environment is a serious concern since some of them can be toxic to plants, animals and humans once accumulated along the food chain. Cadmium (Cd) is one of the most toxic heavy metal. It is naturally present in soils at various levels and its concentration can be increased by human activities. Several plants however have naturally developed strategies allowing them to grow on heavy metal enriched soils. One of them consists in the accumulation and sequestration of heavy metals in the above-ground biomass. Some plants present in addition an extreme strategy by which they accumulate a limited number of heavy metals in their shoots in amounts 100 times superior to those expected for a non-accumulating plant in the same conditions. Understanding the genetic basis of the hyperaccumulation trait - particularly for Cd - remains an important challenge which may lead to biotechnological applications in the soil phytoremediation. In this thesis, Thlaspi caerulescens J. & C. Presl (Brassicaceae) was used as a model plant to study the Cd hyperaccumulation trait, owing to its physiological and genetic characteristics. Twenty-four wild populations were sampled in different regions of Switzerland. They were characterized for environmental and soil parameters as well as intrinsic characteristics of plants (i.e. metal concentrations in shoots). They were as well genetically characterized by AFLPs, plastid DNA polymorphism and genes markers (CAPS and microsatellites) mainly developed in this thesis. Some of the investigated genes were putatively linked to the Cd hyperaccumulation trait. Since the study of the Cd hyperaccumulation in the field is important as it allows the identification of patterns of selection, the present work offered a methodology to define the Cd hyperaccumulation capacity of populations from different habitats permitting thus their comparison in the field. We showed that Cd, Zn, Fe and Cu accumulations were linked and that populations with higher Cd hyperaccumulation capacity had higher shoot and reproductive fitness. Using our genetic data, statistical methods (Beaumont & Nichols's procedure, partial Mantel tests) were applied to identify genomic signatures of natural selection related to the Cd hyperaccumulation capacity. A significant genetic difference between populations related to their Cd hyperaccumulation capacity was revealed based on somè specific markers (AFLP and candidate genes). Polymorphism at the gene encoding IRTl (Iron-transporter also participating to the transport of Zn) was suggested as explaining part of the variation in Cd hyperaccumulation capacity of populations supporting previous physiological investigations. RÉSUMÉ La présence de métaux lourds dans l'environnement est un phénomène préoccupant. En effet, certains métaux lourds - comme le cadmium (Cd) -sont toxiques pour les plantes, les animaux et enfin, accumulés le long de la chaîne alimentaire, pour les hommes. Le Cd est naturellement présent dans le sol et sa concentration peut être accrue par différentes activités humaines. Certaines plantes ont cependant développé des stratégies leur permettant de pousser sur des sols contaminés en métaux lourds. Parmi elles, certaines accumulent et séquestrent les métaux lourds dans leurs parties aériennes. D`autres présentent une stratégie encore plus extrême. Elles accumulent un nombre limité de métaux lourds en quantités 100 fois supérieures à celles attendues pour des espèces non-accumulatrices sous de mêmes conditions. La compréhension des bases génétiques de l'hyperaccumulation -particulièrement celle du Cd - représente un défi important avec des applications concrètes en biotechnologies, tout particulièrement dans le but appliqué de la phytoremediation des sols contaminés. Dans cette thèse, Thlaspi caerulescens J. & C. Presl (Brassicaceae) a été utilisé comme modèle pour l'étude de l'hyperaccumulation du Cd de par ses caractéristiques physiologiques et génétiques. Vingt-quatre populations naturelles ont été échantillonnées en Suisse et pour chacune d'elles les paramètres environnementaux, pédologique et les caractéristiques intrinsèques aux plantes (concentrations en métaux lourds) ont été déterminés. Les populations ont été caractérisées génétiquement par des AFLP, des marqueurs chloroplastiques et des marqueurs de gènes spécifiques, particulièrement ceux potentiellement liés à l'hyperaccumulation du Cd (CAPS et microsatellites). La plupart ont été développés au cours de cette thèse. L'étude de l'hyperaccumulation du Cd en conditions naturelles est importante car elle permet d'identifier la marque, éventuelle de sélection naturelle. Ce travail offre ainsi une méthodologie pour définir et comparer la capacité des populations à hyperaccumuler le Cd dans différents habitats. Nous avons montré que les accumulations du Cd, Zn, Fe et Cu sont liées et que les populations ayant une grande capacité d'hyperaccumuler le Cd ont également une meilleure fitness végétative et reproductive. Des méthodes statistiques (l'approche de Beaumont & Nichols, tests de Martel partiels) ont été utilisées sur les données génétiques pour identifier la signature génomique de la sélection naturelle liée à la capacité d'hyperaccumuler le Cd. Une différenciation génétique des populations liée à leur capacité d'hyperaccumuler le Cd a été mise en évidence sur certains marqueurs spécifiques. En accord avec les études physiologiques connues, le polymorphisme au gène codant IRT1 (un transporteur de Fe impliqué dans le transport du Zn) pourrait expliquer une partie de la variance de la capacité des populations à hyperaccumuler le Cd.
Resumo:
This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench. [Authors]
Resumo:
Activation of microglia is a well-documented phenomenon associated with diverse pathological conditions of the central nervous system. In order to investigate the involvement of microglial cells in the neurotoxic action of the heavy metal compound trimethyltin, three-dimensional brain cell cultures were treated during an early developmental period, using concentrations at or below the limit of cytotoxicity. Microglial cells were studied by cytochemical staining, using horseradish peroxidase-conjugated B4 isolectin (GSI-B4). In parallel, neurotoxic effects were assessed by determining the content of synaptophysin and synapsin I, both in the total homogenates and in the synaptosomal fraction of the cultures. Changes in the content of the specific growth cone protein, GAP-43, were also analyzed. It was found that low, non-cytotoxic concentrations of TMT (10(-9) to 10(-8) M) caused a significant increase in the number and/or the clustering of microglial cells. A decrease in the synaptic protein (synapsin I, synaptophysin) content was detected at 10(-8) M of TMT in synaptosomal fractions, whereas in the total homogenates, changes in synaptic proteins and GAP-43 were observed only at the cytotoxic TMT concentration (10(-6) M). Although it remains to be shown whether the microglial response is caused by direct or indirect action of TMT, the present findings show that microglial responsiveness can be detected prior to any sign of neuronal degeneration, and may serve as a sensitive indicator for heavy metal neurotoxicity in the brain.
Resumo:
Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions.
Resumo:
Case Report: A 19 year old female, originally from Cameroon, residentin Switzerland for 10 years, consults for chronic fatigue, constipationand menorrhagia. Clinical examination reveals pain in the iliac fossa,laboratory tests show an iron deficiency anaemia with a hemoglobinof 74 g/l (N: 117-157) and a ferritin less than 3 μg/l (N: 30-300).Gynecological aetiology is strongly suspected.Findings: The dietary history reveals a high intake of African chalkcalled "Mabel" in Lingala, for which she has a craving with criteria forsubstance dependence according to the Diagnostic and StatisticalManual IV. Eating non-food products is called "PICA" and the eatingof earth "geophagia". It is often assumed by the patient that geophagiaoffers nutritional virtues of the earth, and that the land would act asantitoxic, anti-emetic, immune-stimulant, strengthen the intestinalbarrier and be rich in calcium, iron and many nutrients. But insteadgeophagia causes anemia, iron chelation, heavy metal poisoningand significant constipation or obstruction.Management: The patient, following our advice, stopped ingestingchalk. Parenteral iron substitution of ferric carboxymaltose 1000 mgstopped the craving, and resolved her subjective state of fatigue andher haemoglobin normalized to 140 g/l. The menorrhagia resolved withhormone replacement and the constipation subsequently disappeared.Discussion: Our patient was suffering from iron deficiency resulting ina craving for non-food products in this case the earth. We advisepractitioners to systematically ask the question in patients of Africanand South American origin by using synonyms for the word "Mabel"(African chalk, kaolin, Kalaba, calabash chalk, calabash Stone, Kaolin,hurdle, or clay Nzu). A simple question can sometimes avoid costlyinvestigations. The ferrous replacement intravenously can probably stopthe practice of geophagy faster. Finally, we must remember that thispractice is underestimated and rarely expressed by patients as it isoften felt to be a shameful practice.