8 resultados para Head on collisions.
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Only a few studies have explored the relation between coffee and tea intake and head and neck cancers, with inconsistent results. METHODS: We pooled individual-level data from nine case-control studies of head and neck cancers, including 5,139 cases and 9,028 controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI), adjusting for potential confounders. RESULTS: Caffeinated coffee intake was inversely related with the risk of cancer of the oral cavity and pharynx: the ORs were 0.96 (95% CI, 0.94-0.98) for an increment of 1 cup per day and 0.61 (95% CI, 0.47-0.80) in drinkers of >4 cups per day versus nondrinkers. This latter estimate was consistent for different anatomic sites (OR, 0.46; 95% CI, 0.30-0.71 for oral cavity; OR, 0.58; 95% CI, 0.41-0.82 for oropharynx/hypopharynx; and OR, 0.61; 95% CI, 0.37-1.01 for oral cavity/pharynx not otherwise specified) and across strata of selected covariates. No association of caffeinated coffee drinking was found with laryngeal cancer (OR, 0.96; 95% CI, 0.64-1.45 in drinkers of >4 cups per day versus nondrinkers). Data on decaffeinated coffee were too sparse for detailed analysis, but indicated no increased risk. Tea intake was not associated with head and neck cancer risk (OR, 0.99; 95% CI, 0.89-1.11 for drinkers versus nondrinkers). CONCLUSIONS: This pooled analysis of case-control studies supports the hypothesis of an inverse association between caffeinated coffee drinking and risk of cancer of the oral cavity and pharynx. IMPACT: Given widespread use of coffee and the relatively high incidence and low survival of head and neck cancers, the observed inverse association may have appreciable public health relevance.
Resumo:
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Resumo:
PURPOSE: To evaluate the effects of recent advances in magnetic resonance imaging (MRI) radiofrequency (RF) coil and parallel imaging technology on brain volume measurement consistency. MATERIALS AND METHODS: In all, 103 whole-brain MRI volumes were acquired at a clinical 3T MRI, equipped with a 12- and 32-channel head coil, using the T1-weighted protocol as employed in the Alzheimer's Disease Neuroimaging Initiative study with parallel imaging accelerations ranging from 1 to 5. An experienced reader performed qualitative ratings of the images. For quantitative analysis, differences in composite width (CW, a measure of image similarity) and boundary shift integral (BSI, a measure of whole-brain atrophy) were calculated. RESULTS: Intra- and intersession comparisons of CW and BSI measures from scans with equal acceleration demonstrated excellent scan-rescan accuracy, even at the highest acceleration applied. Pairs-of-scans acquired with different accelerations exhibited poor scan-rescan consistency only when differences in the acceleration factor were maximized. A change in the coil hardware between compared scans was found to bias the BSI measure. CONCLUSION: The most important findings are that the accelerated acquisitions appear to be compatible with the assessment of high-quality quantitative information and that for highest scan-rescan accuracy in serial scans the acquisition protocol should be kept as consistent as possible over time. J. Magn. Reson. Imaging 2012;36:1234-1240. ©2012 Wiley Periodicals, Inc.
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
BACKGROUND: Pharmacy-based case mix measures are an alternative source of information to the relatively scarce outpatient diagnoses data. But most published tools use national drug nomenclatures and offer no head-to-head comparisons between drugs-related and diagnoses-based categories. The objective of the study was to test the accuracy of drugs-based morbidity groups derived from the World Health Organization Anatomical Therapeutic Chemical Classification of drugs by checking them against diagnoses-based groups. METHODS: We compared drugs-based categories with their diagnoses-based analogues using anonymous data on 108,915 individuals insured with one of four companies. They were followed throughout 2005 and 2006 and hospitalized at least once during this period. The agreement between the two approaches was measured by weighted kappa coefficients. The reproducibility of the drugs-based morbidity measure over the 2 years was assessed for all enrollees. RESULTS: Eighty percent used a drug associated with at least one of the 60 morbidity categories derived from drugs dispensation. After accounting for inpatient under-coding, fifteen conditions agreed sufficiently with their diagnoses-based counterparts to be considered alternative strategies to diagnoses. In addition, they exhibited good reproducibility and allowed prevalence estimates in accordance with national estimates. For 22 conditions, drugs-based information identified accurately a subset of the population defined by diagnoses. CONCLUSIONS: Most categories provide insurers with health status information that could be exploited for healthcare expenditure prediction or ambulatory cost control, especially when ambulatory diagnoses are not available. However, due to insufficient concordance with their diagnoses-based analogues, their use for morbidity indicators is limited.
Resumo:
BACKGROUND: The magnitude of risk conferred by the interaction between tobacco and alcohol use on the risk of head and neck cancers is not clear because studies have used various methods to quantify the excess head and neck cancer burden. METHODS: We analyzed individual-level pooled data from 17 European and American case-control studies (11,221 cases and 16,168 controls) participating in the International Head and Neck Cancer Epidemiology consortium. We estimated the multiplicative interaction parameter (psi) and population attributable risks (PAR). RESULTS: A greater than multiplicative joint effect between ever tobacco and alcohol use was observed for head and neck cancer risk (psi = 2.15; 95% confidence interval, 1.53-3.04). The PAR for tobacco or alcohol was 72% (95% confidence interval, 61-79%) for head and neck cancer, of which 4% was due to alcohol alone, 33% was due to tobacco alone, and 35% was due to tobacco and alcohol combined. The total PAR differed by subsite (64% for oral cavity cancer, 72% for pharyngeal cancer, 89% for laryngeal cancer), by sex (74% for men, 57% for women), by age (33% for cases <45 years, 73% for cases >60 years), and by region (84% in Europe, 51% in North America, 83% in Latin America). CONCLUSIONS: Our results confirm that the joint effect between tobacco and alcohol use is greater than multiplicative on head and neck cancer risk. However, a substantial proportion of head and neck cancers cannot be attributed to tobacco or alcohol use, particularly for oral cavity cancer and for head and neck cancer among women and among young-onset cases.
Resumo:
On 1 January 2012 Swiss Diagnosis Related Groups (DRG), a new uniform payment system for in-patients was introduced in Switzerland with the intention to replace a "cost-based" with a "case-based" reimbursement system to increase efficiency. With the introduction of the new payment system we aim to answer questions raised regarding length of stay as well as patients' outcome and satisfaction. This is a prospective, two-centre observational cohort study with data from University Hospital Basel and the Cantonal Hospital Aarau, Switzerland, from January to June 2011 and 2012, respectively. Consecutive in-patients with the main diagnosis of either community-acquired pneumonia, exacerbation of COPD, acute heart failure or hip fracture were included. A questionnaire survey was sent out after discharge investigating changes before and after SwissDRG implementation. Our primary endpoint was LOS. Of 1,983 eligible patients 841 returned the questionnaire and were included into the analysis (429 in 2011, 412 in 2012). The median age was 76.7 years (50.8% male). Patients in the two years were well balanced in regard to main diagnoses and co-morbidities. Mean LOS in the overall patient population was 10.0 days and comparable between the 2011 cohort and the 2012 cohort (9.7 vs 10.3; p = 0.43). Overall satisfaction with care changed only slightly after introduction of SwissDRG and remained high (89.0% vs 87.8%; p = 0.429). Investigating the influence of the implementation of SwissDRG in 2012 regarding LOS patients' outcome and satisfaction, we found no significant changes. However, we observed some noteworthy trends, which should be monitored closely.
Resumo:
The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.