4 resultados para HUQF SUPERGROUP
em Université de Lausanne, Switzerland
Resumo:
The Huqf Supergroup in Oman contains an exceptionally well-preserved and complete sedimentary record of the Middle to Late Neoproterozoic Era. Outcrops of the Huqf Supergroup in northern and central Oman are now well documented, but their correlation with a key succession in the Mirbat area of southern Oman, containing a sedimentary record of two Neoproterozoic glaciations, is poorly understood. Integration of lithostratigraphic, chemostratigraphic and new U-Pb detrital zircon data suggests that the Mirbat Group is best placed within the Cryogenian (c. 850-635 Ma) part of the Huqf Supergroup. The c. I km thick marine deposits of the Arkahawl and Marsham Formations of the Mirbat Group are thought to represent a stratigraphic interval between older Cryogenian and younger Cryogenian glaciations that is not preserved elsewhere in Oman. The bulk of detrital zircons in the Huqf Supergroup originate from Neoproterozoic parent rocks. However, older Mesoproterozoic, Palaeoproterozoic and even Archaean zircons can be recognized in the detrital population from the upper Mahara Group (Fiq Formation) and Nafun Group, suggesting the tapping of exotic sources, probably from the Arabian-Nubian Shield.
Resumo:
This paper focuses on new paleontological discoveries that have come to light while working on a Permian "paieobotanical" transect. from Oman to Central Morocco, In the Huqf area, the continental plant bearing "Gharif" Formation is bracketed by two welt dated marine Formations, providing new age constraint for the discovered "mixed" paleoHora, The newly named KubergarH;Jian'Murgabian "Gharif Paleoflora" is of outstanding paleogeographic .ignificance, Gondwanan, Cathaysian and Euramerian elements are found to be associated, The understanding of the kinematics of the Permian vegetal cover lead us to test the proposed Peri-Tethyan paleogeographical contours
Resumo:
New precise zircon U-Pb ages are proposed for the Triassic-Jurassic (Rhetian-Hettangian) and the Hettangian-Sinemurian boundaries, The ages were obtained by ID-TIMS dating of single chemical-abraded zircons from volcanic ash layers within the Pucara Group, Aramachay Formation in the Utcubamba valley, northern Peru. Ash layers situated between last and first occurrences of boundary-defining ammonites yielded Pb-206/U-238 ages of 201.58 +/- 0.17/0.28 Ma (95% c.l., uncertainties without/with decay constant errors, respectively) for the Triassic-Jurassic and of 199.53 +/- 0.19/0.29 Ma for the Hettangian-Sinemurian boundaries. The former is established on a tuff located 1 m above the last local occurrence of the topmost Triassic genus Choristoceras, and 5 m below the Hettangian genus Psiloceras. The latter sample was obtained from a tuff collected within the Badouxia canadensis beds. Our new ages document total duration of the Hettagian of no more than c. 2 m.y., which has fundamental implications for the interpretation and significance of the ammonite recovery after the topmost Triassic extinction. The U-Pb age is about 0.8 +/- 0.5% older than Ar-40-Ar-39 dates determined on flood basalts of the Central Atlantic Magmatic Province (CAMP). Given the widely accepted hypothesis that inaccuracies in the K-40 decay constants or physical constants create a similar bias between the two dating methods, our new U-Pb zircon age determination for the T/J boundary corroborates the hypothesis that the CAMP was emplaced at the same time and may be responsible for a major climatic turnover and mass extinction. The zircon Pb-206/U-238 age for the T/J boundary is marginally older than the North Mountain Basalt (Newark Supergroup, Nova Scotia, Canada), which has been dated at 201.27 +/- 0.06 Ma [Schoene et al., 2006. Geochim. Cosmochim. Acta 70, 426-445]. It will be important to look for older eruptions of the CAMP and date them precisely by U-Pb techniques while addressing all sources of systematic uncertainty to further test the hypothesis of volcanic induced climate change leading to extinction. Such high-precision, high-accuracy data will be instrumental for constraining the contemporaneity of geological events at a 100 kyr level. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Gold in the quartz-pebble conglomerates of the late Archean Witwatersrand Basin, South Africa, is often intimately associated with carbonaceous matter of organic/biogenic origin which occurs in the form of stratiform carbon seams and paragenetically late bitumen nodules. Both carbon forms are believed to be formed by solidification of migrating hydrocarbons. This paper presents bulk and molecular chemical and stable carbon isotope data for the carbonaceous matter, all of which are used to provide a clue to the source of the hydrocarbons. These data are compared with those from intra-basinal shales and overlying dolostone of the Transvaal Supergroup. The delta C-13 values of the extracts from the Witwatersrand carbonaceous material show small differences (up to 2.4 parts per thousand) compared to the associated insoluble organic matter. This suggests that the auriferous rocks were stained by mobile hydrocarbons produced by thermal and oxidative alteration of indigenous bitumens, a contribution from hydrocarbons derived from intra-basinal Witwatersrand shales cannot be excluded. Individual aliphatic hydrocarbons of the various carbonaceous materials were subjected to compound specific isotope analysis using on-line gas chromatography/combustion/stable isotope ratio mass spectrometry (GC/C/IRMS). The limited variability of the molecular parameters and uniform delta C-13 values of individual n-alkanes (-31.1 +/- 1.7 parts per thousand) and isoprenoids (-30.7 +/- 1.1 parts per thousand) in the Witwatersrand samples exclude the mixing of oils from different sources. Carbonaceous matter in the dolostones shows distinctly different bulk and molecular isotope characteristics and thus cannot have been the source of the hydrocarbons in the Witwatersrand deposits. All the various forms of Witwatersrand carbon appear indigenous to the Witwatersrand Basin, and the differences between them are explained by variable, in general probably short (centimeter- to meter-scale) hydrocarbon migration during diagenesis and subsequent hydrothermal infiltration. (C) 2001 Elsevier Science B.V. All rights reserved.