66 resultados para HUMAN-POPULATIONS
em Université de Lausanne, Switzerland
Resumo:
Previous reports from our group have established that the fetal ovine gamma globin chain (Hbgamma) and LPS can synergize in the induction of pro-inflammatory cytokines, especially TNFalpha, from mouse and human leukocytes. A fetal sheep liver extract (FSLE) which was observed to have marked immunoregulatory properties in vivo and in vitro had independently been observed to contain significant amounts of each of these molecules. However, the biological activity of this extract (hereafter FSLE) was not explained solely by its content of Hbgamma and LPS, and independent analysis confirmed also the presence of migration inhibitory factor, MIF, and glutathione in FSLE. We have investigated whether MIF and the cellular anti-oxidant glutathione can further synergize with Hbgamma and LPS in TNFalpha induction from human cells in vitro, and mouse cells activated in vivo/in vitro. Our data show that indeed there is evidence for such a synergy. Treatment or mouse cells with FSLE produced an enhanced TNFalpha production which could be inhibited independently both by anti-Hbgamma and by anti-MIF, and optimally by a combination of these reagents.
Resumo:
Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
Resumo:
The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV-infected and HIV-negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV-infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host-pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21-infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5-19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5-20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV-infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.
Resumo:
Most approaches aiming at finding genes involved in adaptive events have focused on the detection of outlier loci, which resulted in the discovery of individually "significant" genes with strong effects. However, a collection of small effect mutations could have a large effect on a given biological pathway that includes many genes, and such a polygenic mode of adaptation has not been systematically investigated in humans. We propose here to evidence polygenic selection by detecting signals of adaptation at the pathway or gene set level instead of analyzing single independent genes. Using a gene-set enrichment test to identify genome-wide signals of adaptation among human populations, we find that most pathways globally enriched for signals of positive selection are either directly or indirectly involved in immune response. We also find evidence for long-distance genotypic linkage disequilibrium, suggesting functional epistatic interactions between members of the same pathway. Our results show that past interactions with pathogens have elicited widespread and coordinated genomic responses, and suggest that adaptation to pathogens can be considered as a primary example of polygenic selection.
Resumo:
Global human genetic variation is greatly influenced by geography, with genetic differentiation between populations increasing with geographic distance and within-population diversity decreasing with distance from Africa. In fact, these 'clines' can explain most of the variation in human populations. Despite this, population genetics inferences often rely on models that do not take geography into account, which could result in misleading conclusions when working at global geographic scales. Geographically explicit approaches have great potential for the study of human population genetics. Here, we discuss the most promising avenues of research in the context of human settlement history and the detection of genomic elements under natural selection. We also review recent technical advances and address the challenges of integrating geography and genetics.
Resumo:
Numerous in vitro studies attribute to human TRIM5α some modest anti-HIV-1 activity and human population studies suggest some differential effect of TRIM5α polymorphisms on disease progression. If the activity of TRIM5α were relevant in vivo, it could result in positive selection on the viral capsid. To address this issue, we identified 10 positively selected sites in HIV-1 capsid from multiple viral strains and generated 17 clade B viruses carrying a minor (i.e. low frequency) residue or an alanine at those positions. All recombinant viruses were susceptible to the modest effect of common human TRIM5α and allelic variants R136Q, and H419Y; H43Y and G249D TRIM5α were generally inactive. Increased sensitivity to TRIM5α was observed for some capsid variants, suggesting that minor residues are selected against in human populations. On the other hand, the modest potency of human TRIM5α does not translate in escape mutations in the viral capsid.
Resumo:
CSL is a key transcription factor, mostly acting as a repressor, which has been shown to have a highly context-dependent function. While known as the main effector of Notch signaling, it can also exert Notch-independent functions. The downstream effects of the Notch/CSL signaling pathway and its involvement in several biological processes have been intensively studied. We recently showed that CSL is important to maintain skin homeostasis, as its specific deletion in mouse dermal fibroblasts -or downmodulation in human stromal fibroblasts- creates an inducing environment for squamous cell carcinoma (SCC) development, possibly due to the conversion of stromal fibroblasts into cancer associated fibroblasts (CAFs). Despite the wide interest in CSL as a transcriptional regulator, the mechanism of its own regulation has so far been neglected. We show here that CSL expression levels differ between individuals, and correlate among others with genes involved in DNA damage response. Starting from this finding we show that in dermal fibroblasts CSL is under transcriptional control of stress inducers such as UVA irradiation and Reactive Oxygen Species (ROS) induction, and that a main player in CSL transcriptional regulation is the transcription factor p53. In a separate line of work, we focused on individual variability, studying the differences in gene expression between human populations in various cancer types, particularly focusing on the Caucasian and African populations. It is indeed widely known that these populations have different incidences and mortalities for various cancers, and response to cancer treatment may also vary between them. We show here several genes that are differentially expressed and could be of interest in the study of population differences in cancer. -- CSL est un facteur de transcription agissant essentiellement comme répresseur, et qui a une fonction hautement dépendant du contexte. C'est l'effecteur principal de la voie de signalisation de Notch, mais il peut également exercer ses fonctions dans une façon Notch- indépendante. Nous avons récemment montré que CSL est important pour maintenir l'homéostasie de la peau. Sa suppression spécifique dans les fibroblastes dermiques de la souris ou dans les fibroblastes stromales humaines crée un environnement favorable pour le développement du carcinome épidermoïde (SCC), probablement en raison de la conversion des fibroblastes en fibroblastes associé au cancer (CAF). Malgré le grand intérêt de CSL comme régulateur transcriptionnel, le mécanisme de sa propre régulation a été jusqu'ici négligée. Nous montrons ici que dans les fibroblastes dermiques CSL est sous le contrôle transcriptionnel de facteurs de stress tels que l'irradiation UVA et l'induction des ROS dont p53 est l'acteur principal de cette régulation. Nous montrons aussi que les niveaux d'expression de CSL varient selon les individus, en corrélation avec d'autres gènes impliqués dans la réponse aux dommages de l'ADN. Dans une autre axe de recherche, concernant la variabilité individuelle, nous avons étudié les différences dans l'expression des gènes dans différents types de cancer entre les populations humaines, en se concentrant particulièrement sur les populations africaines et caucasiennes. Il est en effet bien connu que ces populations montrent des variations dans l'incidence des cancers, la mortalité, ainsi que pour les réponses au traitement. Nous montrons ici plusieurs gènes qui sont exprimés différemment et pourraient être digne d'intérêt dans l'étude du cancer au sein de différentes populations.
Resumo:
Summary (in English) Computer simulations provide a practical way to address scientific questions that would be otherwise intractable. In evolutionary biology, and in population genetics in particular, the investigation of evolutionary processes frequently involves the implementation of complex models, making simulations a particularly valuable tool in the area. In this thesis work, I explored three questions involving the geographical range expansion of populations, taking advantage of spatially explicit simulations coupled with approximate Bayesian computation. First, the neutral evolutionary history of the human spread around the world was investigated, leading to a surprisingly simple model: A straightforward diffusion process of migrations from east Africa throughout a world map with homogeneous landmasses replicated to very large extent the complex patterns observed in real human populations, suggesting a more continuous (as opposed to structured) view of the distribution of modern human genetic diversity, which may play a better role as a base model for further studies. Second, the postglacial evolution of the European barn owl, with the formation of a remarkable coat-color cline, was inspected with two rounds of simulations: (i) determine the demographic background history and (ii) test the probability of a phenotypic cline, like the one observed in the natural populations, to appear without natural selection. We verified that the modern barn owl population originated from a single Iberian refugium and that they formed their color cline, not due to neutral evolution, but with the necessary participation of selection. The third and last part of this thesis refers to a simulation-only study inspired by the barn owl case above. In this chapter, we showed that selection is, indeed, effective during range expansions and that it leaves a distinguished signature, which can then be used to detect and measure natural selection in range-expanding populations. Résumé (en français) Les simulations fournissent un moyen pratique pour répondre à des questions scientifiques qui seraient inabordable autrement. En génétique des populations, l'étude des processus évolutifs implique souvent la mise en oeuvre de modèles complexes, et les simulations sont un outil particulièrement précieux dans ce domaine. Dans cette thèse, j'ai exploré trois questions en utilisant des simulations spatialement explicites dans un cadre de calculs Bayésiens approximés (approximate Bayesian computation : ABC). Tout d'abord, l'histoire de la colonisation humaine mondiale et de l'évolution de parties neutres du génome a été étudiée grâce à un modèle étonnement simple. Un processus de diffusion des migrants de l'Afrique orientale à travers un monde avec des masses terrestres homogènes a reproduit, dans une très large mesure, les signatures génétiques complexes observées dans les populations humaines réelles. Un tel modèle continu (opposé à un modèle structuré en populations) pourrait être très utile comme modèle de base dans l'étude de génétique humaine à l'avenir. Deuxièmement, l'évolution postglaciaire d'un gradient de couleur chez l'Effraie des clocher (Tyto alba) Européenne, a été examiné avec deux séries de simulations pour : (i) déterminer l'histoire démographique de base et (ii) tester la probabilité qu'un gradient phénotypique, tel qu'observé dans les populations naturelles puisse apparaître sans sélection naturelle. Nous avons montré que la population actuelle des chouettes est sortie d'un unique refuge ibérique et que le gradient de couleur ne peux pas s'être formé de manière neutre (sans l'action de la sélection naturelle). La troisième partie de cette thèse se réfère à une étude par simulations inspirée par l'étude de l'Effraie. Dans ce dernier chapitre, nous avons montré que la sélection est, en effet, aussi efficace dans les cas d'expansion d'aire de distribution et qu'elle laisse une signature unique, qui peut être utilisée pour la détecter et estimer sa force.
Resumo:
Syrian dry areas have been for several millennia a place of interaction between human populations and the environment. If environmental constraints and heterogeneity condition the human occupation and exploitation of resources, socio-political, economic and historical elements play a fundamental role. Since the late 1980s, Syrian dry areas are viewed as suffering a serious water crisis, due to groundwater overdraft. The Syrian administration and international development agencies believe that groundwater overexploitation is also leading to a decline of agricultural activities and to poverty increase. Action is thus required to address these problems.However, the overexploitation diagnosis needs to be reviewed. The overexploitation discourse appears in the context of Syria's opening to international organizations and to the market economy. It echoes the international discourse of "global water crisis". The diagnosis is based on national indicators recycling old Soviet data that has not been updated. In the post-Soviet era, the Syrian national water policy seems to abandon large surface water irrigation projects in favor of a strategy of water use rationalization and groundwater conservation in crisis regions, especially in the district of Salamieh.This groundwater conservation policy has a number of inconsistencies. It is justified for the administration and also probably for international donors, since it responds to an indisputable environmental emergency. However, efforts to conserve water are anecdotal or even counterproductive. The water conservation policy appears a posteriori as an extension of the national policy of food self-sufficiency. The dominant interpretation of overexploitation, and more generally of the water crisis, prevents any controversary approach of the status of resources and of the agricultural system in general and thus destroys any attempt to discuss alternatives with respect to groundwater management, allocation, and their inclusion in development programs.A revisited diagnosis of the situation needs to take into account spatial and temporal dimensions of the groundwater exploitation and to analyze the co-evolution of hydrogeological and agricultural systems. It should highlight the adjustments adopted to cope with environmental and economic variability, changes of water availability and regulatory measures enforcements. These elements play an important role for water availability and for the spatial, temporal, sectoral allocation of water resource. The groundwater exploitation in the last century has obviously had an impact on the environment, but the changes are not necessarily catastrophic.The current groundwater use in central Syria increases the uncertainty by reducing the ability of aquifers to buffer climatic changes. However, the climatic factor is not the only source of uncertainty. The high volatility of commodity prices, fuel, land and water, depending on the market but also on the will (and capacity) of the Syrian State to preserve social peace is a strong source of uncertainty. The research should consider the whole range of possibilities and propose alternatives that take into consideration the risks they imply for the water users, the political will to support or not the local access to water - thus involving a redefinition of the economic and social objectives - and finally the ability of international organizations to reconsider pre-established diagnoses.
Resumo:
Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world.
Resumo:
INTRODUCTION: The antiretroviral drug efavirenz (EFV) is extensively metabolized into three primary metabolites: 8-hydroxy-EFV, 7-hydroxy-EFV and N-glucuronide-EFV. There is a wide interindividual variability in EFV plasma exposure, explained to a great extent by cytochrome P450 2B6 (CYP2B6), the main isoenzyme responsible for EFV metabolism and involved in the major metabolic pathway (8-hydroxylation) and to a lesser extent in 7-hydroxylation. When CYP2B6 function is impaired, the relevance of CYP2A6, the main isoenzyme responsible for 7-hydroxylation may increase. We hypothesize that genetic variability in this gene may contribute to the particularly high, unexplained variability in EFV exposure in individuals with limited CYP2B6 function. METHODS: This study characterized CYP2A6 variation (14 alleles) in individuals (N=169) previously characterized for functional variants in CYP2B6 (18 alleles). Plasma concentrations of EFV and its primary metabolites (8-hydroxy-EFV, 7-hydroxy-EFV and N-glucuronide-EFV) were measured in different genetic backgrounds in vivo. RESULTS: The accessory metabolic pathway CYP2A6 has a critical role in limiting drug accumulation in individuals characterized as CYP2B6 slow metabolizers. CONCLUSION: Dual CYP2B6 and CYP2A6 slow metabolism occurs at significant frequency in various human populations, leading to extremely high EFV exposure.
Resumo:
Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual's DNA can be used to infer their geographic origin with surprising accuracy-often to within a few hundred kilometres.
Resumo:
Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.
Resumo:
There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using ∼170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of ∼0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
Resumo:
We investigated possible relations among four common neonatal manifestations of diabetic pregnancy (macrosomia, hypoglycemia, hypocalcemia, jaundice) and four enzyme polymorphisms (PGM1, ADA, AK1, ACP1 in a sample of infants born of diabetic mothers. The pattern of associations observed between the two sets of variables is consistent with known differences in enzymatic activity within phenotypes of each system, suggesting that low enzymatic activity may have unfavorable effects on fetal development and on adaptability of the neonate to the extrauterine environment, Some of the polymorphic enzymes studied influence fetal growth in normal pregnancy as well. Analysis of relations between genetic polymorphisms and the clinical pattern of common diseases may provide a better understanding of the genetic basis of the clinical variability of diseases within and between human populations.