23 resultados para HTLV-1 phylogeny
em Université de Lausanne, Switzerland
Resumo:
The Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) has been implicated in human T-cell immortalization. The primary function of Tax is to transcriptionally activate the HTLV-1 promoter, but Tax is also known to stimulate expression of cellular genes. It has been reported to associate with several transcription factors, as well as proteins not involved in transcription. To better characterize potential cellular targets of Tax present in infected cells, a Saccharomyces cerevisiae two-hybrid screening was performed with a cDNA library constructed from the HTLV-1-infected MT2 cell line. From this study, we found 158 positive clones representing seven different cDNAs. We focused our attention on the cDNA encoding the transcription factor CREB-2. CREB-2 is an unconventional member of the ATF/CREB family in that it lacks a protein kinase A (PKA) phosphorylation site and has been reported to negatively regulate transcription from the cyclic AMP response element of the human enkephalin promoter. In this study, we demonstrate that CREB-2 cooperates with Tax to enhance viral transcription and that its basic-leucine zipper C-terminal domain is required for both in vitro and in vivo interactions with Tax. Our results confirm that the activation of the HTLV-1 promoter through Tax and factors of the ATF/CREB family is PKA independent.
Resumo:
Data on HTLV-I are scarce in several Southwest Indian Ocean islands except for La Réunion and The Seychelles. The two cases of HTLV-I have been confirmed by Western-Blot in La Réunion, among blood donors. In Seychelles (87 400 inhabitants in 2012), where blood donors and some other cases are screened, HTLV-I was confirmed with a line immune assay in 43 persons and at least 10-20 patients are known to have tropical spastic paraparesia or adult T-cell lymphoma associated with HTLV-I. In the south-west Indian Ocean, a possibly important other issue may be co-infection of HTLV-1 with the Strongyloides stercoralis roundworm, which is endemic in all countries of the region and which can sometimes lead to severe symptomatic infestation.
Resumo:
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.
Resumo:
The RNA genome of the human T-cell leukemia virus type 1 (HTLV-1) codes for proteins involved in infectivity, replication, and transformation. We report in this study the characterization of a novel viral protein encoded by the complementary strand of the HTLV-1 RNA genome. This protein, designated HBZ (for HTLV-1 bZIP factor), contains a N-terminal transcriptional activation domain and a leucine zipper motif in its C terminus. We show here that HBZ is able to interact with the bZIP transcription factor CREB-2 (also called ATF-4), known to activate the HTLV-1 transcription by recruiting the viral trans-activator Tax on the Tax-responsive elements (TxREs). However, we demonstrate that the HBZ/CREB-2 heterodimers are no more able to bind to the TxRE and cyclic AMP response element sites. Taking these findings together, the functional inactivation of CREB-2 by HBZ is suggested to contribute to regulation of the HTLV-1 transcription. Moreover, the characterization of a minus-strand gene protein encoded by HTLV-1 has never been reported until now.
Resumo:
We have previously demonstrated that the bZIP transcription factor CREB-2, also called ATF-4, trans-activates, in association with the viral protein Tax, the human T-cell leukemia virus type I (HTLV-I) promoter. In this study, we have examined whether CREB-2 acetylation affects transcriptional activation mediated by Tax. We present evidence that CREB-2 is acetylated in vitro and in vivo. CREB-2 is acetylated in two regions: the basic domain of the bZIP (from amino acid residue 270 to 300) and the short basic domain (from 342 to 351) located downstream from the bZIP. We also demonstrate that CREB-2 is acetylated by p300/CBP but not by p/CAF. Moreover, replacement of lysine by arginine in the basic domains decreases the trans-activating capacity of CREB-2. However, in the presence of Tax, the HTLV-I transcription remains fully activated by these CREB-2 mutants. Although we cannot totally exclude that the mutations could also affect CREB-2 structure and activity independent of acetylation, our results suggest that activation of the viral promoter in the presence of Tax is independent of the CREB-2 acetylation.
Resumo:
In this study, we characterize proviral DNA of 20 HIV-1 asymptomatic antiretroviral-naive patients from Venezuela in env, gag, and pol genes regions. Results from both env/gag HMA subtyping and phylogenetic analysis of pol partial sequences led to the description of clade B in all cases. Nevertheless, the high prevalence of polymorphisms was particularly evident among the protease sequences. A 10% prevalence of major resistance mutations to RTIs was found. Our data also suggested that the protease polymorphisms I62T and V77T could be considered as molecular markers of the subtype B local epidemic. In addition, we show how proviral DNA can be used as a reliable tool to follow trends of resistance mutation transmission.
Resumo:
Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies.
Resumo:
The aim of this study is to provide a better understanding of the genetic relationships within the widespread and highly polymorphic group of African giant shrews (Crocidura olivieri group). We sequenced 769 base pairs (bp) of the mitochondrial cytochrome b gene and 472 bp of the mitochondrial control region over the entire geographic range from South Africa to Morocco. The analyses reveal four main clades associated with different biomes. The largest clade occurs over a range covering Northwest and Central Africa and includes samples of C. fulvastra, C. olivieri, and C. viaria. The second clade is composed of C. goliath from Gabon, while South African C. flavescens, and C. hirta form two additional clades. On the basis of these results, the validity of some taxa in the C. olivieri group should be re-evaluated.
Resumo:
BACKGROUND: Sequence data from resistance testing offer unique opportunities to characterize the structure of human immunodeficiency virus (HIV) infection epidemics. METHODS: We analyzed a representative set of HIV type 1 (HIV-1) subtype B pol sequences from 5700 patients enrolled in the Swiss HIV Cohort Study. We pooled these sequences with the same number of sequences from foreign epidemics, inferred a phylogeny, and identified Swiss transmission clusters as clades having a minimal size of 10 and containing >or=80% Swiss sequences. RESULTS: More than one-half of Swiss patients were included within 60 transmission clusters. Most transmission clusters were significantly dominated by specific transmission routes, which were used to identify the following patient groups: men having sex with men (MSM) (38 transmission clusters; average cluster size, 29 patients) or patients acquiring HIV through heterosexual contact (HETs) and injection drug users (IDUs) (12 transmission clusters; average cluster size, 144 patients). Interestingly, there were no transmission clusters dominated by sequences from HETs only. Although 44% of all HETs who were infected between 1983 and 1986 clustered with injection drug users, this percentage decreased to 18% for 2003-2006 (P<.001), indicating a diminishing role of injection drug users in transmission among HETs over time. CONCLUSIONS: Our analysis suggests (1) the absence of a self-sustaining epidemic of HIV-1 subtype B in HETs in Switzerland and (2) a temporally decreasing clustering of HIV infections in HETs and IDUs.
Resumo:
Switzerland has a complex human immunodeficiency virus (HIV) epidemic involving several populations. We examined transmission of HIV type 1 (HIV-1) in a national cohort study. Latent class analysis was used to identify socioeconomic and behavioral groups among 6,027 patients enrolled in the Swiss HIV Cohort Study between 2000 and 2011. Phylogenetic analysis of sequence data, available for 4,013 patients, was used to identify transmission clusters. Concordance between sociobehavioral groups and transmission clusters was assessed in correlation and multiple correspondence analyses. A total of 2,696 patients were infected with subtype B, 203 with subtype C, 196 with subtype A, and 733 with recombinant subtypes (mainly CRF02_AG and CRF01_AE). Latent class analysis identified 8 patient groups. Most transmission clusters of subtype B were shared between groups of gay men (groups 1-3) or between the heterosexual groups "heterosexual people of lower socioeconomic position" (group 4) and "injection drug users" (group 8). Clusters linking homosexual and heterosexual groups were associated with "older heterosexual and gay people on welfare" (group 5). "Migrant women in heterosexual partnerships" (group 6) and "heterosexual migrants on welfare" (group 7) shared non-B clusters with groups 4 and 5. Combining approaches from social and molecular epidemiology can provide insights into HIV-1 transmission and inform the design of prevention strategies.
Resumo:
BACKGROUND: Drug-resistant human immunodeficiency virus type 1 (HIV-1) minority variants (MVs) are present in some antiretroviral therapy (ART)-naive patients. They may result from de novo mutagenesis or transmission. To date, the latter has not been proven. METHODS: MVs were quantified by allele-specific polymerase chain reaction in 204 acute or recent seroconverters from the Zurich Primary HIV Infection study and 382 ART-naive, chronically infected patients. Phylogenetic analyses identified transmission clusters. RESULTS: Three lines of evidence were observed in support of transmission of MVs. First, potential transmitters were identified for 12 of 16 acute or recent seroconverters harboring M184V MVs. These variants were also detected in plasma and/or peripheral blood mononuclear cells at the estimated time of transmission in 3 of 4 potential transmitters who experienced virological failure accompanied by the selection of the M184V mutation before transmission. Second, prevalence between MVs harboring the frequent mutation M184V and the particularly uncommon integrase mutation N155H differed highly significantly in acute or recent seroconverters (8.2% vs 0.5%; P < .001). Third, the prevalence of less-fit M184V MVs is significantly higher in acutely or recently than in chronically HIV-1-infected patients (8.2% vs 2.5%; P = .004). CONCLUSIONS: Drug-resistant HIV-1 MVs can be transmitted. To what extent the origin-transmission vs sporadic appearance-of these variants determines their impact on ART needs to be further explored.
Resumo:
BACKGROUND: The frequency of HIV-1 co/super-infection is unknown despite their implications for public health and vaccine development. This issue was addressed during an epidemic of both CRF11 and B subtype among intravenous drug users (IVDUs). METHODS: Bulk sequencing of reverse transcriptase, protease and C2V3 regions and subtype-specific nested polymerase chain reaction (PCR) in plasma and proviral DNA were performed using baseline and follow-up samples collected in recently infected IVDUs between 1998-2002 and in IVDUs with chronic infection living in the same area and presenting an unexpected rise of viremia (> 1 log10). RESULTS: In 58 recently infected patients, three B/CRF-11 co-infections, 25 B, 28 CRF-11 and two other subtypes were detected at baseline. In the three co-infected patients, both CRF-11 and B were detected in plasma and proviral DNA and persisted during follow-up. B- and CFR-11-specific PCR performed on follow-up samples of 40 of 58 recently infected patients (median follow-up, 14.5 months) revealed a transient B super-infection in a patient initially infected by CRF-11. Five of 156 chronic IVDUs (total follow-up: 346 years) had an unexpected rise of viremia. In two of them, aviremic without treatment for years after an initial B infection, a symptomatic CRF-11 super-infection occurred and was associated with high viral load and a fall of CD4 cell count. CONCLUSIONS: In recently infected IVDUs, co-infection B/CRF-11 is relatively frequent (5%). In chronically infected IVDUs super-infection may be transient and may occur in patients controlling efficiently HIV infection by the initial strain.
Resumo:
In this study we have characterized intra-patient length polymorphism in V4 by cloning and sequencing a C2-C4 fragment from HIV plasma RNA in patients at different stages of HIV disease. Clonal analysis of clade B, G, and CRF02 isolates during early infection shows extensive intra-patient V4 variability, due to the presence of indel-associated polymorphism. Indels, coupled to amino acid substitution events, affect the number and distribution of potential N-glycosylation sites, resulting in the coexistence, within the same patient, of V4 subsets, each characterized by different sizes, amino acid sequences, and potential N-glycosylation patterns. In contrast, V3 appears to be relatively homogeneous, with similar V3 associated to significantly different V4 within the same clinical specimen. Based on these data, we propose that during early chronic infection V4 is present as a highly divergent quasispecies, enabling the virus to adopt different conformational structures according to immune constrains and other selective pressures
Resumo:
Transmission of drug-resistant variants is influenced by several factors, including the prevalence of drug resistance in the population of HIV-1-infected patients, HIV-1 RNA levels and transmission by recently infected patients. In order to evaluate the impact of these factors on the transmission of drug-resistant variants, we have defined the population of potential transmitters and compared their resistance profiles to those of newly infected patients. Sequencing of pol gene was performed in 220 recently infected patients and in 373 chronically infected patients with HIV-1 RNA >1000 copies/ml. Minimal and maximal drug-resistance profiles of potential transmitters were estimated by weighting resistance profiles of chronically infected patients with estimates of the Swiss HIV-1-infected population, the prevalence of exposure to antiviral drugs and the proportion of infections attributed to primary HIV infections. The drug-resistance prevalence in recently infected patients was 10.5% (one class drug resistance: 9.1%; two classes: 1.4%; three classes: 0%). Phylogenetic analysis revealed significant clustering for 30% of recent infections. The drug-resistance prevalence in chronically infected patients was 72.4% (one class: 29%; two classes: 27.6%; three classes: 15.8%). After adjustment, the risk of transmission relative to wild-type was reduced both for one class drug resistance (minimal and maximal estimates: odds ratio: 0.39, P<0.001; and odds ratio: 0.55, P=0.011, respectively), and for two to three class drug resistance (odds ratios: 0.05 and 0.07, respectively, P<0.001). Neither sexual behaviour nor HIV-1 RNA levels explained the low transmission of drug-resistant variants. These data suggest that drug-resistant variants and in particular multidrug-resistant variants have a substantially reduced transmission capacity.